Пример #1
0
    def wrapper(*args, **kwargs):
        global conn
        cur = None
        if 'cursor' not in kwargs:
            cur = conn.cursor(cursor_factory=psycopg2.extras.NamedTupleCursor)
            kwargs['cursor'] = cur

        log = loggers.Logger('QueryErrors')
        while True:
            try:
                query = foo(*args, **kwargs)
                if cur is not None:
                    kwargs['cursor'].close()
                break
            except (psycopg2.OperationalError, psycopg2.InterfaceError, psycopg2.DatabaseError) as e1:
                try:
                    log.error(f"Error during query {e1}", exc_info=True)
                    kwargs['cursor'].close()
                    conn.close()
                    conn = db_connect()
                    kwargs['cursor'] = conn.cursor(cursor_factory=psycopg2.extras.NamedTupleCursor)
                except Exception as e2:
                    log.error(f"Error during db_connect: {e2}", exc_info=True)
                    time.sleep(60)  # Время не понятно каким должно быть
            except Exception as e3:
                log.error(f'Unhandled exception in wrapper {e3}', exc_info=True)
                raise e3
        return query
    def __init__(self, model, optimizer, sampling_min, batch_size, lr_sched,
                 num_classes):

        ## Hardcoded params
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        sb_start_epoch = 1
        log_interval = 1
        sampling_max = 1
        # Params for resuming from checkpoint
        start_epoch = 0
        start_num_backpropped = 0
        start_num_skipped = 0

        probability_calculator = selectors.SelectProbabiltyCalculator(
            sampling_min,
            sampling_max,
            num_classes,
            device,
            square=False,
            translate=False)

        final_selector = selectors.DeterministicSamplingSelector(
            probability_calculator, initial_sum=1)
        final_backpropper = backproppers.SamplingBackpropper(
            device, model, optimizer)
        self.selector = selectors.PrimedSelector(selectors.BaselineSelector(),
                                                 final_selector,
                                                 sb_start_epoch,
                                                 epoch=start_epoch)
        self.backpropper = backproppers.PrimedBackpropper(
            backproppers.BaselineBackpropper(device, model, optimizer),
            final_backpropper,
            sb_start_epoch,
            epoch=start_epoch)
        self.trainer = trainer.Trainer(device,
                                       model,
                                       self.selector,
                                       self.backpropper,
                                       batch_size,
                                       lr_schedule=lr_sched)

        self.logger = loggers.Logger(log_interval=log_interval,
                                     epoch=start_epoch,
                                     num_backpropped=start_num_backpropped,
                                     num_skipped=start_num_skipped)
        self.trainer.on_forward_pass(self.logger.handle_forward_batch)
        self.trainer.on_backward_pass(self.logger.handle_backward_batch)
Пример #3
0
    def __init__(self,
                 model,
                 optimizer,
                 prob_pow,
                 batch_size,
                 lr_sched,
                 num_classes,
                 num_training_images,
                 forwardlr,
                 strategy,
                 calculator="relative",
                 fp_selector_type="alwayson",
                 staleness=2):

        ## Hardcoded params
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        assert device == "cuda"
        self.num_training_images = num_training_images
        num_images_to_prime = self.num_training_images
        #num_images_to_prime = 0

        log_interval = 1
        sampling_min = 0
        sampling_max = 1
        max_history_len = 1024
        prob_loss_fn = nn.CrossEntropyLoss
        loss_fn = nn.CrossEntropyLoss
        sample_size = 0  # only needed for topk, lowk

        # Params for resuming from checkpoint
        start_epoch = 0
        start_num_backpropped = 0
        start_num_skipped = 0

        self.selector = None
        self.fp_selector = None
        if strategy == "nofilter":
            self.backpropper = backproppers.SamplingBackpropper(
                device, model, optimizer, loss_fn)
            self.trainer = trainer.NoFilterTrainer(device,
                                                   model,
                                                   self.backpropper,
                                                   batch_size,
                                                   loss_fn,
                                                   lr_schedule=lr_sched,
                                                   forwardlr=forwardlr)
        else:
            probability_calculator = calculators.get_probability_calculator(
                calculator, device, prob_loss_fn, sampling_min, sampling_max,
                num_classes, max_history_len, prob_pow)
            self.selector = selectors.get_selector("sampling",
                                                   probability_calculator,
                                                   num_images_to_prime,
                                                   sample_size)

            self.fp_selector = fp_selectors.get_selector(fp_selector_type,
                                                         num_images_to_prime,
                                                         staleness=staleness)

            self.backpropper = backproppers.SamplingBackpropper(
                device, model, optimizer, loss_fn)

            self.trainer = trainer.MemoizedTrainer(device,
                                                   model,
                                                   self.selector,
                                                   self.fp_selector,
                                                   self.backpropper,
                                                   batch_size,
                                                   loss_fn,
                                                   lr_schedule=lr_sched,
                                                   forwardlr=forwardlr)

        self.logger = loggers.Logger(log_interval=log_interval,
                                     epoch=start_epoch,
                                     num_backpropped=start_num_backpropped,
                                     num_skipped=start_num_skipped,
                                     start_time_seconds=start_time_seconds)

        self.trainer.on_backward_pass(self.logger.handle_backward_batch)
        self.trainer.on_forward_pass(self.logger.handle_forward_batch)
Пример #4
0
def get_address(tid, _OS, ssh=None, cursor=None):
    try_exc(os.mkdir, f"{windows.projects}{tid}")
    logger = loggers.Logger(tid, address=H_OS.projects + str(tid) + H_OS.slash)
    cursor.execute(f'SELECT project, file, params, uid FROM tasks WHERE id = {tid}')
    row = foolproof(cursor.fetchone())
    uid = row.uid
    param = json.loads(row.params)
    path = _OS.r_path + 'files' + _OS.slash + str(row.project) + _OS.slash  # prefix\tasks.project\
    cursor.execute(f'SELECT fname, parent, pid, version FROM files WHERE id = {row.file}')  # tasks.file
    row = foolproof(cursor.fetchone())
    pid = row.pid
    if ssh:
        try_exc(ssh.run, f'{_OS.mkdir} "{_OS.r_path}files{_OS.slash}{pid}"')
        if row.version:  # row.version is not None in blend project only
            if row.version not in BLD_V:
                logger.critical(f'Unknown or unsupported blender file version: {row.version}')
                param['v'] = BLD_V['282']
            else:
                param['v'] = BLD_V[row.version]
            cursor.execute(f"UPDATE tasks SET params='{json.dumps(param)}'::json WHERE id={tid}")
            conn.commit()

    temp_path = row.fname  # contains .skp filename
    # print(temp_path)
    while row.parent:
        cursor.execute(f'SELECT fname, parent FROM files WHERE id = {row.parent}')
        row = cursor.fetchone()
        temp_path = row.fname + windows.slash + temp_path  # folder\filename.skp
    projectfile = path + temp_path
    cursor.execute(f'SELECT * FROM files WHERE pid={pid} and host_location IS NOT NULL and size !=0 and status = 1')
    files = cursor.fetchall()
    for file in files:
        time_out = 600
        if list(filter(file.host_location.endswith,
                       ['.blend', '.skp', '.max', '.vrscene'])) and _OS.r_path + file.host_location.replace(
            _OS.antislash, _OS.slash) != path + temp_path:
            continue
        logger.debug(f'File row: {file}')
        logger.debug(windows.r_path + file.host_location.replace('/', windows.slash))
        while time_out > 0:
            if os.access((windows.r_path + file.host_location).replace('/', windows.slash), os.F_OK):
                break
            time_out -= 3
            time.sleep(3)
            logger.debug(
                f'No {windows.r_path}{file.host_location} file on disk. Waiting'.replace('/', windows.slash))
        else:  # Нужно кидать эксепшен на первый же ненайденный файл
            logger.critical(f'No {windows.r_path}{file.host_location} file on disk'.replace('/', windows.slash))
            temp_frames_ban(tid, cursor=cursor)
            frame_splits_set_ban(tid, cursor=cursor)
            status_update(tid, tid, H_OS, status=15, cursor=cursor)
            raise TimeoutError
        logger.debug(
            f"Its size:{os.path.getsize((windows.r_path + file.host_location).replace('/', windows.slash))}")

        time_out = 300
        while time_out > 0:
            if os.path.getsize((windows.r_path + file.host_location).replace('/', windows.slash)) == file.size:
                # send
                if ssh:
                    dir_adr = (_OS.r_path + file.host_location).replace(_OS.antislash, _OS.slash).rsplit(_OS.slash, 1)[
                        0]
                    if (path + temp_path).replace(_OS.antislash, _OS.slash).rsplit(_OS.slash, 1)[0] != dir_adr:
                        try_exc(ssh.run, _OS.mkdir, dir_adr)
                        logger.debug(f'{_OS.mkdir} "{dir_adr}"')
                    remdir = (_OS.put_path + file.host_location).replace(_OS.antislash, _OS.slash)
                    if file.host_location.endswith('.max'):
                        remdir = remdir.rsplit(windows.slash, 1)[0] + windows.slash + str(file.id) + '.max'
                        projectfile = projectfile.rsplit(windows.slash, 1)[0] + windows.slash + str(file.id) + '.max'
                    ssh.put((windows.r_path + file.host_location).replace(windows.antislash, windows.slash),
                            remote=remdir)
                break
            logger.debug(
                f'Size of {windows.r_path}{file.host_location} has not matched. Waiting'.replace('/', windows.slash))
            time_out -= 1
            time.sleep(2)
        else:
            logger.critical(
                f'Size of {windows.r_path}{file.host_location} has not matched.'.replace('/', windows.slash))
            temp_frames_ban(tid)
            status_update(tid, tid, H_OS, status=15)
            raise TimeoutError
    logger.debug('All files are OK')
    return projectfile, param, uid
Пример #5
0
def server_check(task, cursor=None, servers='3,5,12,16,17,18'):
    logger = loggers.Logger(task.task, address=H_OS.projects + str(task.task) + H_OS.slash)
    cursor.execute(f'SELECT server_level FROM temp_frames where tid={task.task} and server_level=128')
    is_srv_128 = cursor.fetchone()  # Проверяет нодность сцены
    while True:
        """Опрос серверов и заполнение словарей"""
        cursor.execute(f'SELECT busy, ip, level FROM servers WHERE id IN ({servers}) ORDER BY id')
        row = cursor.fetchall()

        for srv in SRV:
            SRV[srv][1] = sum([row[SRV_LIST.index(i)].busy for i in SRV[srv][0]])
        for srv in win_dict:
            win_dict[srv][1] = row[SRV_LIST.index(win_dict[srv][0])].busy
        for srv in lin_dict:
            lin_dict[srv][1] = row[SRV_LIST.index(lin_dict[srv][0])].busy

        """Виндовый blender и 3dsMAX обрабатываются одинаково"""
        if task.render == 20 or task.render == 1:
            for srv in win_dict:
                if win_dict[srv][1] == 0:
                    update_server_status(SRV_LIST[srv], logger, status=1, cursor=cursor)
                    frame_splits_update(task.id, is_done=-1, cursor=cursor)
                    return srv, task.id, task.render, '64,128'
            return None, None, None, '64,128'

        elif task.render == 21:
            """Линуксовый blender"""
            for srv in lin_dict:
                if lin_dict[srv][1] == 0:
                    update_server_status(SRV_LIST[srv], logger, status=1, cursor=cursor)
                    frame_splits_update(task.id, is_done=-1, cursor=cursor)
                    return srv, task.id, task.render, '64,128'
            return None, None, None, '64,128'

        elif task.render == 4 or task.render == 5:
            """vrcene files from SU and solo"""
            if is_srv_128 and not SRV[4][1]:  # Вначале проверяет на 128нод и занимает SRV[4] как единсвенный вариант
                update_server_status(SRV[4][0], logger, status=1, cursor=cursor)
                frame_splits_update(task.id, is_done=-1, tariff=1.7, cursor=cursor)
                return 4, task.id, task.render, '64,128'
            elif is_srv_128:  # Если серверы заняты то инициирует новый поиск сцены на 64 нода
                return None, None, None, '64'
            else:
                for srv in SRV:
                    if SRV[srv][1] == 0:
                        # Сцены на 64 нода успевают захватить сервера при переключении между 128мыми сценами
                        # Поэтому проверяет наличие в очереди старшей сцены на 128нод перед захватом сервера
                        # Можно проверять нодность верхней сцены, но интересней сравнить tid - он будет отличаться,
                        # если сцена лезет без очереди
                        task2 = scene_check(cursor=cursor)
                        tariff = None
                        # По-умолчанию tariff=1, и чтобы так и осталось, нужно передавать None в frame_splits_update
                        if task.task != task2.task and not SRV[4][1]:
                            srv = 4
                            tariff = 1.7
                            task = task2
                        update_server_status(SRV[srv][0], logger, status=1, cursor=cursor)
                        frame_splits_update(task.id, is_done=-1, tariff=tariff, cursor=cursor)
                        return srv, task.id, task.render, '64,128'
                else:
                    return None, None, None, '64,128'
Пример #6
0
def status_update(tid, name, _os, encoding='utf-8', status=0, cursor=None):
    logger = loggers.Logger(name, encoding=encoding, address=_os.projects + str(tid) + _os.slash)
    cursor.execute(f'UPDATE tasks SET status={status} WHERE id={tid}')
    cursor.execute(f'select name from statuses where id={status}')
    logger.debug(f'Status updated for tid:{tid}, set: {cursor.fetchone().name}')
    conn.commit()
Пример #7
0
def experiment(n_classes, bilinear, dropout, learning_rate, gamma, alpha,
               data_path, val_percent, batch_size, rep_num, logfile, augment,
               date):

    settings = locals().copy()

    # Make results folder for specific parameters
    savepath = 'results/{}/g{}_alp{}_bs{}_lr{}_bilin{}_do{}_aug{}'.format(
        date, gamma, alpha, batch_size, learning_rate, bilinear, dropout,
        augment)

    if not os.path.exists(savepath):
        os.makedirs(savepath)

    if logfile != 'none':
        try:
            logger = loggers.Logger('{}/{}'.format(savepath, logfile))
        except loggers.LogAlreadyExistsError as e:
            print(e.message)
            return
        logger.connect()

    print('Program: {}'.format(sys.argv[0]))
    print('Command line: {}'.format(' '.join(sys.argv)))
    print('Settings:')
    print(', '.join(
        ['{}={}'.format(k, settings[k]) for k in sorted(settings.keys())]))

    best_accuracy = float('inf')

    # LOAD MODEL
    input_channels = 5
    print('LOAD VGG16 UNET MODEL')
    torch_device = torch.device(
        'cuda:0' if torch.cuda.is_available() else 'cpu')
    model = vgg16_UNet(models.vgg16(), input_channels, n_classes, bilinear,
                       dropout).to(torch_device)
    model.encoder.expand_input(input_channels)

    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    criterion = FocalLoss(gamma=gamma, alpha=alpha)

    print('Selecting dataset from training islands...')

    trainset_X, valset_X, trainset_y, valset_y = new_data_splitter(
        data_path, test_island, island_refs, observer_list, val_percent)

    train_X = ImageAccessor(trainset_X, load_image_vgg16)
    val_X = ImageAccessor(valset_X, load_image_vgg16)

    train_y = ImageAccessor(trainset_y, load_tgt_vgg16)
    val_y = ImageAccessor(valset_y, load_tgt_vgg16)

    trainset = data_source.ArrayDataSource([train_X, train_y])
    valset = data_source.ArrayDataSource([val_X, val_y])

    # Augment
    trainset = trainset.map(augment_batch)
    valset = valset.map(augment_batch)

    pool = work_pool.WorkerThreadPool(4)
    trainset = pool.parallel_data_source(trainset)
    valset = pool.parallel_data_source(valset)

    data_loaders = {'train': trainset, 'val': valset}

    print('BEGIN TRAINING...')
    total_train_loss = []
    total_val_loss = []
    no_improvement = 0
    epoch = 0

    while no_improvement < 10:

        t1 = time.time()
        print('-' * 10)

        # Train and validate
        train_loss = train(model, optimizer, data_loaders, criterion,
                           batch_size, torch_device, 'train')
        val_loss = train(model, optimizer, data_loaders, criterion, batch_size,
                         torch_device, 'val')

        t2 = time.time()
        print(
            'Epoch {} took {:.3f}s; training loss = {:.6f}; validation loss = {:.6f}'
            .format(epoch, t2 - t1, train_loss, val_loss))
        # Save losses
        total_train_loss.append(train_loss)
        total_val_loss.append(val_loss)

        # Check loss and save checkpoint
        is_best = bool(val_loss < best_accuracy)

        if is_best:
            no_improvement = 0  # reset the counter after new best found
        else:
            no_improvement += 1  # count how many non-improvements

        print('Current best loss: {}'.format(best_accuracy))
        best_accuracy = min(val_loss, best_accuracy)

        print('{}/checkpoint.pth.tar'.format(savepath))

        save_checkpoint(
            {
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'best_accuracy': torch.FloatTensor([best_accuracy])
            }, is_best, '{}/checkpoint.pth.tar'.format(savepath))

        print('No improvement in loss for {} epochs'.format(no_improvement))

        if epoch == 5:
            print('Setting new learning rate...')
            optimizer = torch.optim.Adam(model.parameters(),
                                         lr=learning_rate / 10.)

        epoch += 1

    np.savez('{}/TrainingLoss.npz'.format(savepath),
             train_loss=total_train_loss,
             val_loss=total_val_loss)

    return
Пример #8
0
    folder, __, files = next(g)
    fantasy_zip = zipfile.ZipFile(f"{H_OS.projects}{_tid}{H_OS.slash}archive.zip", 'w')
    not_empty = False
    for file in files:
        if (file.endswith(".png") or file.endswith(".PNG") or
                file.endswith(".jpg") or file.endswith(".JPG") or
                file.endswith(".exr") or file.endswith(".EXR")):  # поддержать выбор формата
            not_empty = True
            fantasy_zip.write(os.path.join(folder, file), file, compress_type=zipfile.ZIP_DEFLATED)
    fantasy_zip.close()
    if not_empty:
        crl = pycurl.Curl()
        crl.setopt(crl.URL, f'https://winrender.com/upload_blender.php?id={_tid}')
        crl.setopt(pycurl.SSL_VERIFYPEER, 0)
        crl.setopt(pycurl.SSL_VERIFYHOST, 0)
        crl.setopt(crl.HTTPPOST, [
            ('file', (
                crl.FORM_FILE, f"{H_OS.projects}{_tid}{H_OS.slash}archive.zip",
            )),
        ])
        result = crl.perform_rs()
        logger.info(f'{H_OS.projects}{_tid}{H_OS.slash}archive.zip sent:{result}')
        crl.close()
    else:
        os.remove(f"{H_OS.projects}{_tid}{H_OS.slash}archive.zip")


if __name__ == '__main__':
    logger = loggers.Logger(sys.argv[1], address=H_OS.projects + sys.argv[1] + H_OS.slash)
    uploader(sys.argv[1])
    def __init__(self,
                 model,
                 optimizer,
                 prob_pow,
                 batch_size,
                 lr_sched,
                 num_classes,
                 num_training_images,
                 forwardlr,
                 strategy,
                 kath_oversampling_rate,
                 calculator="relative",
                 fp_selector_type="alwayson",
                 staleness=2,
                 spline_y1=None,
                 spline_y2=None,
                 spline_y3=None):

        ## Hardcoded params
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        assert device == "cuda"
        self.num_training_images = num_training_images
        num_images_to_prime = self.num_training_images

        log_interval = 1
        bias_batch_log_interval = 1000
        sampling_min = 0
        sampling_max = 1
        max_history_len = 1024
        prob_loss_fn = nn.CrossEntropyLoss
        loss_fn = nn.CrossEntropyLoss
        sample_size = 0 # only needed for kath, topk, lowk

        # Params for resuming from checkpoint
        start_epoch = 0
        start_num_backpropped = 0
        start_num_skipped = 0
        kath_oversampling_rate = 4

        self.selector = None
        self.fp_selector = None
        self.bias_logger = None
        if strategy == "kath":
            self.selector = None
            self.backpropper = backproppers.SamplingBackpropper(device,
                                                                model,
                                                                optimizer,
                                                                loss_fn)
            self.trainer = trainer.KathTrainer(device,
                                               model,
                                               self.backpropper,
                                               batch_size,
                                               int(batch_size * kath_oversampling_rate),
                                               loss_fn,
                                               lr_schedule=lr_sched,
                                               forwardlr=forwardlr)
        elif strategy == "nofilter":
            self.backpropper = backproppers.SamplingBackpropper(device,
                                                                model,
                                                                optimizer,
                                                                loss_fn)
            self.trainer = trainer.NoFilterTrainer(device,
                                                   model,
                                                   self.backpropper,
                                                   batch_size,
                                                   loss_fn,
                                                   lr_schedule=lr_sched,
                                                   forwardlr=forwardlr)
        elif strategy == "logbias":
            probability_calculator = calculators.get_probability_calculator(calculator,
                                                                            device,
                                                                            prob_loss_fn,
                                                                            sampling_min,
                                                                            sampling_max,
                                                                            num_classes,
                                                                            max_history_len,
                                                                            prob_pow,
                                                                            spline_y1,
                                                                            spline_y2,
                                                                            spline_y3)
            self.selector = selectors.get_selector("sampling",
                                                   probability_calculator,
                                                   num_images_to_prime,
                                                   sample_size)
            self.fp_selector = fp_selectors.get_selector("alwayson",
                                                         num_images_to_prime,
                                                         staleness=staleness)

            self.backpropper = backproppers.GradientAndSelectivityLoggingBackpropper(device,
                                                                                     model,
                                                                                     optimizer,
                                                                                     loss_fn,
                                                                                     10,
                                                                                     bias_batch_log_interval)
            self.trainer = trainer.MemoizedTrainer(device,
                                                   model,
                                                   self.selector,
                                                   self.fp_selector,
                                                   self.backpropper,
                                                   batch_size,
                                                   loss_fn,
                                                   lr_schedule=lr_sched,
                                                   forwardlr=forwardlr)


            self.bias_logger = loggers.BiasByEpochLogger("/tmp",
                                                    "test",
                                                    bias_batch_log_interval)
            self.trainer.on_backward_pass(self.bias_logger.handle_backward_batch)

        else:
            probability_calculator = calculators.get_probability_calculator(calculator,
                                                                            device,
                                                                            prob_loss_fn,
                                                                            sampling_min,
                                                                            sampling_max,
                                                                            num_classes,
                                                                            max_history_len,
                                                                            prob_pow,
                                                                            spline_y1,
                                                                            spline_y2,
                                                                            spline_y3)
            self.selector = selectors.get_selector("sampling",
                                                   probability_calculator,
                                                   num_images_to_prime,
                                                   sample_size)

            self.fp_selector = fp_selectors.get_selector(fp_selector_type,
                                                         num_images_to_prime,
                                                         staleness=staleness)

            self.backpropper = backproppers.SamplingBackpropper(device,
                                                                model,
                                                                optimizer,
                                                                loss_fn)

            self.trainer = trainer.MemoizedTrainer(device,
                                                   model,
                                                   self.selector,
                                                   self.fp_selector,
                                                   self.backpropper,
                                                   batch_size,
                                                   loss_fn,
                                                   lr_schedule=lr_sched,
                                                   forwardlr=forwardlr)

        self.logger = loggers.Logger(log_interval = log_interval,
                                     epoch=start_epoch,
                                     num_backpropped=start_num_backpropped,
                                     num_skipped=start_num_skipped,
                                     start_time_seconds = start_time_seconds)

        self.trainer.on_backward_pass(self.logger.handle_backward_batch)
        self.trainer.on_forward_pass(self.logger.handle_forward_batch)
Пример #10
0
from dbmod import *
from su2019 import su_func
import loggers

if __name__ == '__main__':

    subprocess.Popen(["python", f"{PROJECT_DIR}SplitManager.py"])
    while True:
        task_row = None
        while not task_row:
            task_row = task_monitor()
            time.sleep(4)
        """Got task"""
        try_exc(os.mkdir, f"{windows.projects}{task_row.tid}")
        logger = loggers.Logger(task_row.tid,
                                address=H_OS.projects + str(task_row.tid) +
                                H_OS.slash)
        logger.info(f"Got task:\n{task_row}")
        """Unsupported renderer"""
        if task_row.render not in (20, 21, 4, 5, 1):
            temp_frames_ban(task_row.tid)
            status_update(task_row.tid, task_row.tid, H_OS, status=13)
            logger.warning(
                f"Task {task_row.tid} gets temp_frames.is_done=2, cause its render={task_row.render}"
            )
            continue
        """Supported renderer"""
        status_update(task_row.tid, task_row.tid, H_OS, status=2)
        temp_frames_ban(task_row.tid, is_done=-1)
        """Blender"""
        if task_row.render == 20 or task_row.render == 21: