def test_connective_to_onf(self): alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) charlie = Symbol.Predicate('C', ['u']) delta = Symbol.Predicate('D', ['z']) # Trivial case -- already in CNF two = (beta | alpha) & (delta) self.assertEqual(repr(two.to_onf()), '((B(y) | A(x)) & D(z))') two = (beta & alpha) | (delta) self.assertEqual(repr(two.to_onf()), '((D(z) | B(y)) & (D(z) | A(x)))') # Reversed case two = (delta) | (beta & alpha) self.assertEqual(repr(two.to_onf()), '((D(z) | B(y)) & (D(z) | A(x)))') # Nested distribution one = (alpha & beta) | (charlie & delta) self.assertEqual( repr(one.to_onf()), '((A(x) | C(u)) & (A(x) | D(z)) & (B(y) | C(u)) & (B(y) | D(z)))') # Nested distribution one = (alpha | (beta & (charlie | (delta & alpha)))) self.assertEqual( repr(one.to_onf()), '((A(x) | B(y)) & (C(u) | A(x) | D(z)) & (C(u) | A(x) | A(x)))')
def test_axiom_to_pcnf(self): a = Symbol.Predicate('A', ['x']) b = Symbol.Predicate('B', ['y']) c = Symbol.Predicate('C', ['z']) # Simple test of disjunction over conjunction axi_one = Axiom.Axiom(Quantifier.Universal(['x','y','z'], a | b & c)) axi_one = axi_one.to_pcnf() self.assertEqual('∀(z,y,x)[((A(z) | B(y)) & (A(z) | C(x)))]', repr(axi_one)) # Test recursive distribution #axi_one = Axiom.Axiom(Quantifier.Universal(['x','y','z'], a | (b & (a | (c & b))))) #print(repr(axi_one)) #self.assertEqual('', repr(axi_one.to_pcnf())) # Simple sanity check, it's already FF-PCNF axi_two = Axiom.Axiom(Quantifier.Universal(['x','y','z'], (a | b) & c)) axi_two = axi_two.to_pcnf() self.assertEqual('∀(z,y,x)[(C(x) & (A(z) | B(y)))]', repr(axi_two)) # Sanity check we remove functions c = Symbol.Predicate('C', ['z', Symbol.Function('F', ['z'])]) axi_three = Axiom.Axiom(Quantifier.Universal(['x','y','z'], a | b & c)) axi_three = axi_three.to_pcnf() self.assertEqual('∀(z,y,x,w,v)[((A(z) | ~C(w,v) | F(w,v)) & (A(z) | B(y)))]', repr(axi_three))
def test_distribution(self): ''' Ensure that distribution over conjunctions work ''' #(b & (a | (c & b))) alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) charlie = Symbol.Predicate('C', ['t']) delta = Symbol.Predicate('D', ['z']) s = delta | (alpha & beta) ret = s.distribute(s.terms[0], s.terms[1]) self.assertEqual(repr(ret), '((D(z) | A(x)) & (D(z) | B(y)))') s = (alpha | beta) & delta ret = s.distribute(s.terms[0], s.terms[1]) self.assertEqual(repr(ret), '((D(z) & A(x)) | (D(z) & B(y)))') s = (alpha | beta) & (beta | delta) ret = s.distribute(s.terms[0], s.terms[1]) self.assertEqual(repr(ret), '(((A(x) | B(y)) & B(y)) | ((A(x) | B(y)) & D(z)))') # Simple case - single distribute s = beta | (alpha & (delta | charlie)) ret = s.distribute(s.terms[0], s.terms[1]) self.assertEqual('((B(y) | A(x)) & (B(y) | D(z) | C(t)))', repr(ret)) # Slightly more complex s = (beta & charlie) | (alpha & (delta | charlie)) ret = s.distribute(s.terms[0], s.terms[1]) self.assertEqual( '(((B(y) & C(t)) | A(x)) & ((B(y) & C(t)) | D(z) | C(t)))', repr(ret))
def test_predicate_form(self): ''' Ensure that predicates take the correct repr form ''' alpha = Symbol.Predicate('A', ['x']) self.assertEqual(repr(alpha), 'A(x)') beta = Symbol.Predicate('B', ['x', 'y']) self.assertEqual(repr(beta), 'B(x,y)')
def test_axiom_function_replacement(self): f = Symbol.Function('f', ['x']) t = Symbol.Function('t', ['y']) a = Symbol.Predicate('A', [f]) b = Symbol.Predicate('B', [f, t]) axi = Axiom.Axiom(Quantifier.Universal(['x'], a | a & a)) self.assertEqual(repr(axi), '∀(x)[(A(f(x)) | (A(f(x)) & A(f(x))))]') axi = Axiom.Axiom(Quantifier.Universal(['x', 'y'], b))
def test_conjunction_form(self): """ Ensure basic & operator overloading is working """ alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['x', 'y']) delta = Symbol.Predicate('D', ['z']) self.assertEqual(repr(alpha & beta), '(A(x) & B(x,y))') self.assertEqual(repr(alpha & beta & delta), '(A(x) & B(x,y) & D(z))')
def test_disjunction_form(self): ''' Ensure basic | operator overloading is working ''' alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['x', 'y']) delta = Symbol.Predicate('D', ['z']) self.assertEqual(repr(alpha | beta), '(A(x) | B(x,y))') self.assertEqual(repr(alpha | beta | delta), '(A(x) | B(x,y) | D(z))')
def test_axiom_variable_standardize(self): a = Symbol.Predicate('A', ['x']) b = Symbol.Predicate('B', ['y', 'x']) c = Symbol.Predicate('C', ['a','b','c','d','e','f','g','h','i']) axi = Axiom.Axiom(Quantifier.Universal(['x'], a | a & a)) self.assertEqual(repr(axi.standardize_variables()), '∀(z)[(A(z) | (A(z) & A(z)))]') axi = Axiom.Axiom(Quantifier.Universal(['x', 'y'], b)) self.assertEqual(repr(axi.standardize_variables()), '∀(z,y)[B(y,z)]') axi = Axiom.Axiom(Quantifier.Existential(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'], c)) self.assertEqual(repr(axi.standardize_variables()), '∃(z,y,x,w,v,u,t,s,r)[C(z,y,x,w,v,u,t,s,r)]')
def test_cnf_quantifier_simplfy(self): alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) uni_one = Quantifier.Universal(['x'], alpha) mixer = uni_one | beta uni_two = Quantifier.Universal(['y'], mixer) uni_nested = Quantifier.Universal(['z'], alpha & (beta | (alpha & uni_one))) self.assertEqual('∀(z)[(A(x) & (B(y) | (A(x) & ∀(x)[A(x)])))]', repr(uni_nested)) self.assertEqual('∀(z,x)[(A(x) & (B(y) | (A(x) & A(x))))]', repr(uni_nested.simplify())) self.assertEqual(repr(uni_two), "∀(y)[(∀(x)[A(x)] | B(y))]") self.assertEqual(repr(uni_two.simplify()), "∀(y,x)[(B(y) | A(x))]")
def test_mixed_form(self): ''' Ensure that the & and | operators work when chained ''' alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['x', 'y']) delta = Symbol.Predicate('D', ['z']) self.assertEqual(repr((alpha & beta) | delta), '((A(x) & B(x,y)) | D(z))') self.assertEqual(repr(alpha & (beta | delta)), '(A(x) & (B(x,y) | D(z)))') self.assertEqual(repr((alpha & beta) | (alpha & delta)), '((A(x) & B(x,y)) | (A(x) & D(z)))') self.assertEqual(repr((alpha | beta) & (alpha | delta)), '((A(x) | B(x,y)) & (A(x) | D(z)))')
def test_axiom_simple_function_replacement(self): f = Symbol.Function('f', ['x']) t = Symbol.Function('t', ['y']) p = Symbol.Function('p', ['z']) a = Symbol.Predicate('A', [f, t, p]) b = Symbol.Predicate('B', [f, t]) c = Symbol.Predicate('C', [f]) axi = Axiom.Axiom(Quantifier.Universal(['x', 'y', 'z'], a )) self.assertEqual(repr(axi.substitute_functions()), '∀(x,y,z)[∀(f2,t3,p4)[(~A(f2,t3,p4) | (f(x,f2) & t(y,t3) & p(z,p4)))]]') axi = Axiom.Axiom(Quantifier.Universal(['x',], ~c )) self.assertEqual(repr(axi.substitute_functions()), '∀(x)[~~∀(f5)[(C(f5) | f(x,f5))]]') c = Symbol.Predicate('C', [Symbol.Function('f', [Symbol.Function('g', [Symbol.Function('h', ['x'])])])]) axi = Axiom.Axiom(Quantifier.Universal(['x'], c)) self.assertEqual(repr(axi.substitute_functions()), '∀(x)[∀(f5,g6,h7)[(~C(f5) | (h(x,h7) & g(h7,g6) & f(g6,f5)))]]')
def test_axiom_quantifier_coalesence(self): a = Symbol.Predicate('A', ['x']) b = Symbol.Predicate('B', ['y']) universal = Quantifier.Universal(['x'], a) universal_two = Quantifier.Universal(['y'], b) existential = Quantifier.Existential(['y'], b) existential_two = Quantifier.Existential(['x'], a) # Coalescence over conjunction should merge Universals conjunction = universal & universal_two & existential & existential_two self.assertEqual(repr(conjunction.coalesce()), '(∃(y)[B(y)] & ∃(x)[A(x)] & ∀(x)[(B(x) & A(x))])') # Coalescence over disjunction should merge Existentials disjunction = universal | universal_two | existential | existential_two self.assertEqual(repr(disjunction.coalesce()), '(∀(x)[A(x)] | ∀(y)[B(y)] | ∃(y)[(A(y) | B(y))])')
def test_cnf_quantifier_scoping(self): a = Symbol.Predicate('A', ['x']) b = Symbol.Predicate('B', ['y']) c = Symbol.Predicate('C', ['z']) e = Quantifier.Existential(['x'], a) u = Quantifier.Universal(['y'], b) # Test the effect over an OR self.assertEqual('∃(x)[(A(x) | B(y))]', repr((e | b).rescope())) self.assertEqual('∀(y)[(B(y) | A(x))]', repr((u | a).rescope())) # Test the effect over an AND self.assertEqual('∃(x)[(A(x) & B(y))]', repr((e & b).rescope())) self.assertEqual('∀(y)[(B(y) & A(x))]', repr((u & a).rescope())) # Test with more than two to make sure things aren't dropped self.assertEqual('∀(y)[(B(y) & (A(x) | C(z) | B(y)))]', repr((u & (a | c | b)).rescope()))
def test_onf_detection(self): alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) delta = Symbol.Predicate('D', ['z']) uni = Quantifier.Universal(['x', 'y', 'z'], alpha | beta | delta) exi = Quantifier.Existential(['x','y','z'], alpha & beta | delta) self.assertEqual(alpha.is_onf(), True) self.assertEqual((alpha | beta).is_onf(), True) self.assertEqual((alpha & beta).is_onf(), True) self.assertEqual((alpha | (beta & delta)).is_onf(), False) self.assertEqual((alpha & (beta | delta)).is_onf(), True) self.assertEqual((~(alpha | beta)).is_onf(), False) self.assertEqual((~(alpha & beta)).is_onf(), False) self.assertEqual(uni.is_onf(), True) self.assertEqual(exi.is_onf(), False) # Note that is_onf() is not a recursive call, it's a top level feature # If will actually if you need an ONF axiom then create a Logical.Axiom and to_onf() self.assertEqual((alpha & (alpha | (beta & delta)) & delta).is_onf(), False)
def p_predicate(p): """ predicate : LPAREN NONLOGICAL parameter RPAREN """ p[0] = Symbol.Predicate(p[2], p[3])