def test_test(self): database = Database('test_annotations_10000_cleaned.csv', header_path='test_annotations_10000_cleaned_header.csv') database_train = database.sample_and_remove(5000) database_test = database labels_train = fast_strong_cluster(database_train) labels_test = fast_strong_cluster(database_test) train_seed = generate_pair_seed(database_train, labels_train, 0.5) match_function = LogisticMatchFunction(database_train, labels_train, train_seed, 0.7) roc = match_function.test(database_test, labels_test, 0.5) roc.make_plot()
def setUp(self): self._test_path = 'test_annotations_cleaned.csv' self._database = Database(self._test_path) self._labels = fast_strong_cluster(self._database) self._blocking = BlockingScheme(self._database, single_block=True) self._er = EntityResolution() decision_threshold = 1.0 pair_seed = generate_pair_seed(self._database, self._labels, 0.5) self._match_function = LogisticMatchFunction(self._database, self._labels, pair_seed, decision_threshold)
def test_completeness(self): database = Database('test_annotations_10000_cleaned.csv', max_records=1000, header_path='test_annotations_10000_cleaned_header.csv') database_train = database.sample_and_remove(800) database_test = database labels_train = fast_strong_cluster(database_train) labels_test = fast_strong_cluster(database_test) er = EntityResolution() pair_seed = generate_pair_seed(database_train, labels_train, 0.5) match_function = LogisticMatchFunction(database_train, labels_train, pair_seed, 0.99) blocking_scheme = BlockingScheme(database_test) labels_pred = er.run(database_test, match_function, blocking_scheme, cores=2) number_fast_strong_records = len(labels_train) + len(labels_test) self.assertEqual(number_fast_strong_records, 1000) self.assertEqual(sorted((labels_train.keys() + labels_test.keys())), range(0, 1000)) number_swoosh_records = len(get_ids(database_test.records)) self.assertEqual(number_swoosh_records, len(database_test.records)) self.assertEqual(get_ids(database_test.records), sorted(labels_test.keys())) self.assertEqual(get_ids(database_test.records), sorted(labels_pred.keys()))
def setUp(self): self._database = Database('test_annotations_cleaned.csv') labels = fast_strong_cluster(self._database) pair_seed = generate_pair_seed(self._database, labels, 0.5) self._blocking = BlockingScheme(self._database) self._match_function = LogisticMatchFunction(self._database, labels, pair_seed, 0.5)
class MyTestCase(unittest.TestCase): def setUp(self): self._database = Database('test_annotations_cleaned.csv') labels = fast_strong_cluster(self._database) pair_seed = generate_pair_seed(self._database, labels, 0.5) self._blocking = BlockingScheme(self._database) self._match_function = LogisticMatchFunction(self._database, labels, pair_seed, 0.5) def test_pairs(self): database = Database('test_annotations_10000_cleaned.csv', header_path='test_annotations_10000_cleaned_header.csv') labels = fast_strong_cluster(database) pair_seed = generate_pair_seed(database, labels, 0.5) # x1_a, x2_a, m_a = _get_pairs(database, labels, 10, balancing=True) # x1_b, x2_b, m_b = _get_pairs(database, labels, 10, balancing=True) # self.assertNotEqual(x1_a, x1_b) # self.assertNotEqual(x2_a, x2_b) # self.assertNotEqual(m_a, m_b) x1_a, x2_a, m_a = get_pairwise_features(database, labels, pair_seed) x1_b, x2_b, m_b = get_pairwise_features(database, labels, pair_seed) np.testing.assert_array_equal(x1_a, x1_b) np.testing.assert_array_equal(x2_a, x2_b) np.testing.assert_array_equal(m_a, m_b) def test_mean_imputation(self): x = np.array([[1, 2, 3, 4], [np.NaN, 4, 5, np.NaN], [1, 6, np.NaN, np.NaN]]) m = mean_imputation(x) self.assertTrue((m == np.array([1, 4, 4, 4])).all()) def test_match(self): r0 = self._database.records[0] r1 = self._database.records[1] r2 = self._database.records[2] r3 = self._database.records[3] labels = { 0: 0, 1: 0, 2: 1, 3: 1 } pair_seed = generate_pair_seed(self._database, labels, 0.5) self._match_function._train(self._database, labels, pair_seed) self.assertTrue(self._match_function.match(r0, deepcopy(r0))[0]) self.assertTrue(self._match_function.match(r1, deepcopy(r1))[0]) self.assertTrue(self._match_function.match(r2, deepcopy(r2))[0]) self.assertTrue(self._match_function.match(r3, deepcopy(r3))[0]) def test_test(self): database = Database('test_annotations_10000_cleaned.csv', header_path='test_annotations_10000_cleaned_header.csv') database_train = database.sample_and_remove(5000) database_test = database labels_train = fast_strong_cluster(database_train) labels_test = fast_strong_cluster(database_test) train_seed = generate_pair_seed(database_train, labels_train, 0.5) match_function = LogisticMatchFunction(database_train, labels_train, train_seed, 0.7) roc = match_function.test(database_test, labels_test, 0.5) roc.make_plot() def test_get_x1(self): r0 = self._database.records[0] r1 = self._database.records[1] r2 = self._database.records[2] r3 = self._database.records[3] self.assertEqual(strong_match(r0, r3), True) self.assertEqual(strong_match(r1, r3), True) self.assertEqual(strong_match(r0, r1), False) self.assertEqual(strong_match(r0, r2), False) self.assertEqual(strong_match(r1, r2), False) self.assertEqual(strong_match(r2, r3), False) def test_get_x2(self): r0 = self._database.records[0] x2 = get_weak_pairwise_features(r0, r0) self.assertEqual(x2[0], 0) # [1], binary match self.assertEqual(x2[1], 0) # [2], date diff self.assertEqual(x2[2], 0) # [3], bin self.assertEqual(x2[3], 0) # [4], bin self.assertEqual(x2[4], 0) # [7] bin self.assertEqual(x2[5], 0) # [8] num diff self.assertTrue(isnan(x2[6])) # [9] bin self.assertTrue(isnan(x2[7])) # [10] num diff self.assertTrue(isnan(x2[8])) # [11] num diff self.assertTrue(isnan(x2[9])) # [12] bin self.assertTrue(isnan(x2[10])) # [13] num diff self.assertTrue(isnan(x2[11])) # [14] num diff self.assertTrue(isnan(x2[12])) # [15] num diff self.assertTrue(isnan(x2[13])) # [16] bin self.assertTrue(isnan(x2[14])) # [17] bin self.assertTrue(isnan(x2[15])) # [18] bin self.assertTrue(isnan(x2[16])) # [19] bin self.assertTrue(isnan(x2[17])) # [24] bin self.assertTrue(isnan(x2[18])) # [25] bin self.assertEqual(x2[19], np.exp(-3)) # [26] number matches def test_number_matches(self): x_a = {1, 2, 3} x_b = {3, 4, 5} x_c = set() self.assertEqual(number_matches(x_a, x_a), 3) self.assertEqual(number_matches(x_a, x_b), 1) self.assertTrue(isnan(number_matches(x_a, x_c))) def test_numerical_difference(self): x_a = {1, 2, 3} x_b = {4, 5, 5} x_c = set() self.assertEqual(numerical_difference(x_a, x_a), 0) self.assertEqual(numerical_difference(x_a, x_b), 1) self.assertTrue(isnan(numerical_difference(x_a, x_c))) def test_binary_match(self): x_a = {1, 2, 3} x_b = {3, 4, 5} x_c = set() x_d = {5} self.assertEqual(binary_match(x_a, x_a), 1) self.assertEqual(binary_match(x_a, x_b), 1) self.assertEqual(binary_match(x_a, x_d), 0) self.assertTrue(isnan(binary_match(x_a, x_c))) def test_levenshtein(self): r1 = {'Matthew'} r2 = {'Matt'} d = levenshtein(r1, r2) self.assertEqual(d, 3) r1 = {'abcd', 'efgh', 'ijkl'} r2 = {'abbb', 'egfe', 'i'} d = levenshtein(r1, r2) self.assertEqual(d, 2) d = levenshtein(r1, r1) self.assertEqual(d, 0)
def synthetic_sizes(): """ Sizes experiment here """ resolution = 88 number_features = 10 number_entities = np.linspace(10, 100, num=resolution) number_entities = number_entities.astype(int) records_per_entity = 10 #train_database_size = 100 train_class_balance = 0.5 #validation_database_size = 100 corruption_multiplier = .001 databases = list() db = SyntheticDatabase(number_entities[0], records_per_entity, number_features=number_features) databases.append(deepcopy(db)) add_entities = [x - number_entities[i - 1] for i, x in enumerate(number_entities)][1:] for add in add_entities: db.add(add, records_per_entity) databases.append(deepcopy(db)) corruption = np.random.normal(loc=0.0, scale=1.0, size=[number_entities[-1]*records_per_entity, number_features]) train = deepcopy(databases[0]) validation = deepcopy(databases[0]) train.corrupt(corruption_multiplier*np.random.normal(loc=0.0, scale=1.0, size=[len(train.database.records), number_features])) validation.corrupt(corruption_multiplier*np.random.normal(loc=0.0, scale=1.0, size=[len(train.database.records), number_features])) for db in databases: db.corrupt(corruption_multiplier*corruption[:len(db.database.records), :]) er = EntityResolution() train_pair_seed = generate_pair_seed(train.database, train.labels, train_class_balance) weak_match_function = LogisticMatchFunction(train.database, train.labels, train_pair_seed, 0.5) ROC = weak_match_function.test(validation.database, validation.labels, 0.5) #ROC.make_plot() ## Optimize ER on small dataset thresholds = np.linspace(0, 1.0, 10) metrics_list = list() #new_metrics_list = list() pairwise_precision = list() pairwise_recall = list() pairwise_f1 = list() for threshold in thresholds: weak_match_function.set_decision_threshold(threshold) labels_pred = er.run(deepcopy(databases[0].database), weak_match_function, single_block=True, max_block_size=np.Inf, cores=1) met = Metrics(databases[0].labels, labels_pred) metrics_list.append(met) pairwise_precision.append(met.pairwise_precision) pairwise_recall.append(met.pairwise_recall) pairwise_f1.append(met.pairwise_f1) #class_balance_test = get_pairwise_class_balance(databases[0].labels) #new_metrics_list.append(NewMetrics(databases[0].database, er, class_balance_test)) plt.plot(thresholds, pairwise_precision, label='Precision') plt.plot(thresholds, pairwise_recall, label='Recall') plt.plot(thresholds, pairwise_f1, label='F1') plt.xlabel('Threshold') plt.legend() plt.ylabel('Score') plt.title('Optimizing ER on small dataset') #i = np.argmax(np.array(pairwise_f1)) #small_optimal_threshold = thresholds[i] # optimize this small_optimal_threshold = 0.6 print 'Optimal small threshold set at =', small_optimal_threshold plt.show() ## Possible score by optimizing on larger dataset metrics_list = list() pairwise_precision = list() pairwise_recall = list() pairwise_f1 = list() thresholds_largedataset = np.linspace(0.6, 1.0, 8) precision_lower_bound = list() recall_lower_bound = list() f1_lower_bound = list() for threshold in thresholds_largedataset: weak_match_function.set_decision_threshold(threshold) labels_pred = er.run(deepcopy(databases[-1].database), weak_match_function, single_block=True, max_block_size=np.Inf, cores=1) met = Metrics(databases[-1].labels, labels_pred) metrics_list.append(met) pairwise_precision.append(met.pairwise_precision) pairwise_recall.append(met.pairwise_recall) pairwise_f1.append(met.pairwise_f1) class_balance_test = count_pairwise_class_balance(databases[-1].labels) new_metric = NewMetrics(databases[-1].database, labels_pred, weak_match_function, class_balance_test) precision_lower_bound.append(new_metric.precision_lower_bound) recall_lower_bound.append(new_metric.recall_lower_bound) f1_lower_bound.append(new_metric.f1_lower_bound) plt.plot(thresholds_largedataset, pairwise_precision, label='Precision', color='r') plt.plot(thresholds_largedataset, pairwise_recall, label='Recall', color='b') plt.plot(thresholds_largedataset, pairwise_f1, label='F1', color='g') plt.plot(thresholds_largedataset, precision_lower_bound, label='Precision Bound', color='r', linestyle=':') plt.plot(thresholds_largedataset, recall_lower_bound, label='Recall Bound', color='b', linestyle=':') plt.plot(thresholds_largedataset, f1_lower_bound, label='F1 Bound', color='g', linestyle=':') i = np.argmax(np.array(f1_lower_bound)) large_optimal_threshold = thresholds_largedataset[i] print 'Optimal large threshold automatically set at =', large_optimal_threshold print 'If not correct: debug.' plt.xlabel('Threshold') plt.legend() plt.ylabel('Score') plt.title('Optimizing ER on large dataset') plt.show() ## Run on all dataset sizes #new_metrics_list = list() database_sizes = list() small_pairwise_precision = list() small_pairwise_recall = list() small_pairwise_f1 = list() large_precision_bound = list() large_precision_bound_lower_ci = list() large_precision_bound_upper_ci = list() large_precision = list() large_recall_bound = list() large_recall_bound_lower_ci = list() large_recall_bound_upper_ci = list() large_recall = list() large_f1 = list() large_f1_bound = list() for db in databases: print 'Analyzing synthetic database with', len(db.database.records), 'records' database_sizes.append(len(db.database.records)) weak_match_function.set_decision_threshold(small_optimal_threshold) labels_pred = er.run(db.database, weak_match_function, single_block=True, max_block_size=np.Inf, cores=1) met = Metrics(db.labels, labels_pred) small_pairwise_precision.append(met.pairwise_precision) small_pairwise_recall.append(met.pairwise_recall) small_pairwise_f1.append(met.pairwise_f1) weak_match_function.set_decision_threshold(large_optimal_threshold) labels_pred = er.run(db.database, weak_match_function, single_block=True, max_block_size=np.Inf, cores=1) met = Metrics(db.labels, labels_pred) large_precision.append(met.pairwise_precision) large_recall.append(met.pairwise_recall) large_f1.append(met.pairwise_f1) class_balance_test = count_pairwise_class_balance(db.labels) new_metric = NewMetrics(db.database, labels_pred, weak_match_function, class_balance_test) large_precision_bound.append(new_metric.precision_lower_bound) large_recall_bound.append(new_metric.recall_lower_bound) large_f1_bound.append(new_metric.f1_lower_bound) large_precision_bound_lower_ci.append(new_metric.precision_lower_bound_lower_ci) large_precision_bound_upper_ci.append(new_metric.precision_lower_bound_upper_ci) large_recall_bound_lower_ci.append(new_metric.recall_lower_bound_lower_ci) large_recall_bound_upper_ci.append(new_metric.recall_lower_bound_upper_ci) with open('synthetic_sizes_temp.csv', 'wb') as f: f.write('Database size, Precision (small opt), Recall (small opt), F1 (small opt), Precision (large opt), Precision bound (large opt), Lower CI, Upper CI, Recall (large opt), Recall bound (large opt), Lower CI, Upper CI, F1 (large opt), F1 bound (large opt)\n') writer = csv.writer(f) writer.writerows(izip(database_sizes, small_pairwise_precision, small_pairwise_recall, small_pairwise_f1, large_precision, large_precision_bound, large_precision_bound_lower_ci, large_precision_bound_upper_ci, large_recall, large_recall_bound, large_recall_bound_lower_ci, large_recall_bound_upper_ci, large_f1, large_f1_bound)) f.close() plt.figure() plt.plot(database_sizes, pairwise_precision, label='Precision', color='#4477AA', linewidth=3) plt.plot(database_sizes, pairwise_recall, label='Recall', color='#CC6677', linewidth=3) #plt.plot(database_sizes, pairwise_f1, label='F1', color='#DDCC77', linewidth=2) plt.ylim([0, 1.05]) plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0]) plt.legend(title='Pairwise:', loc='lower left') plt.xlabel('Number of Records') plt.ylabel('Pairwise Score') plt.title('Performance Degredation') plt.show()