Пример #1
0
def main():
    args, agent_args = get_args()
    c.MAIN_ARGS = vars(args)  # For documenting runs
    if args.verbose:
        logs.set_level(logging.DEBUG)

    if args.update_sim:
        ensure_sim(update=True)
        return

    if args.public and not c.PUBLIC:
        answer = input('Please confirm you want to make the results '
                       'of this evaluation public? ')
        args.public = answer.lower() in ['y', 'yes']
        if not args.public:
            print('Answer was not "y" or "yes", not making public')

    if args.recording_dir.startswith('~'):
        args.recording_dir = os.path.expanduser(args.recording_dir)

    if args.hdf5_2_tfrecord:
        from agents.dagger.train import hdf5_to_tfrecord
        hdf5_to_tfrecord.encode(hdf5_path=args.recording_dir,
                                experiment=args.experiment)
        return
    elif args.server or args.json_server:
        from deepdrive_api import server
        sim_args = None
        log.info('Starting Deepdrive server')
        if len(sys.argv) > 2:
            # More than just --server was passed,
            # so sim will be configured purely on the server side,
            # vs purely from the client in order to prevent
            # cheating / clients that change their environment in evals.
            sim_args = get_sim_args_from_command_args(args)
        if sim_args is not None:
            sim_args = sim_args.to_dict()
        ensure_sim()
        server.start(sim, json_mode=args.json_server,
                     sim_path=get_sim_path(), sim_args=sim_args)
        return
    else:
        camera_rigs = get_camera_rigs(args)
        driving_style = DrivingStyle.from_str(args.driving_style)
        from install import check_tensorflow_gpu

        if args.path_follower:
            run_path_follower(args, camera_rigs)
        elif not check_tensorflow_gpu():
            log.info('Tensorflow not installed, falling back to PID path '
                     'follower agent as mnet2 baseline agent requires '
                     'Tensorflow')
            run_path_follower(args, camera_rigs)
        else:
            run_tf_based_models(args, camera_rigs, driving_style)
Пример #2
0
def main():
    parser = argparse.ArgumentParser(description=None)
    parser.add_argument('-e',
                        '--env-id',
                        nargs='?',
                        default='DeepDrive-v0',
                        help='Select the environment to run')
    parser.add_argument(
        '-r',
        '--record',
        action='store_true',
        default=False,
        help='Records game driving, including recovering from random actions')
    parser.add_argument('--baseline',
                        action='store_true',
                        default=False,
                        help='Runs pretrained imitation learning based agent')
    parser.add_argument('-t',
                        '--train',
                        action='store_true',
                        default=False,
                        help='Trains tensorflow agent on stored driving data')
    parser.add_argument('--use-last-model',
                        action='store_true',
                        default=False,
                        help='Run the most recently trained model')
    parser.add_argument('--recording-dir',
                        nargs='?',
                        default=c.RECORDING_DIR,
                        help='Where to store and read recorded '
                        'environment data from')
    parser.add_argument(
        '--render',
        action='store_true',
        default=False,
        help=
        'SLOW: render of camera data in Python - Use Unreal for real time camera rendering'
    )
    parser.add_argument(
        '--record-recovery-from-random-actions',
        action='store_true',
        default=False,
        help=
        'Whether to occasionally perform random actions and record recovery from them'
    )
    parser.add_argument('--path-follower',
                        action='store_true',
                        default=False,
                        help='Whether to let the in-game path follower drive')
    parser.add_argument(
        '--net-path',
        nargs='?',
        default=None,
        help='Path to the tensorflow checkpoint you want to test drive. '
        'i.e. /home/a/DeepDrive/tensorflow/2018-01-01__11-11-11AM_train/model.ckpt-98331'
    )
    parser.add_argument(
        '--resume-train',
        nargs='?',
        default=None,
        help='Path to the tensorflow training session you want to resume, '
        'i.e. /home/a/DeepDrive/tensorflow/2018-01-01__11-11-11AM_train')
    parser.add_argument('-v',
                        '--verbose',
                        help='Increase output verbosity',
                        action='store_true')
    parser.add_argument('--camera-rigs',
                        nargs='?',
                        default=None,
                        help='Name of camera rigs to use')
    parser.add_argument('-n',
                        '--experiment-name',
                        nargs='?',
                        default=None,
                        help='Name of your experiment')
    parser.add_argument('--fps',
                        type=int,
                        default=c.DEFAULT_FPS,
                        help='Frames / steps per second')

    args = parser.parse_args()
    if args.verbose:
        logs.set_level(logging.DEBUG)

    if args.camera_rigs:
        camera_rigs = camera_config.rigs[args.camera_rigs]
    else:
        camera_rigs = camera_config.rigs['baseline_rigs']

    if args.use_last_model:
        if args.train:
            args.resume_train = get_latest_model()
        else:
            args.net_path = get_latest_model()

    if args.train:
        from tensorflow_agent.train import train
        # TODO: Add experiment name here as well, and integrate it into Tensorflow runs, recording names, model checkpoints, etc...
        train.run(resume_dir=args.resume_train,
                  recording_dir=args.recording_dir)
    elif args.path_follower:
        done = False
        render = False
        episode_count = 1
        gym_env = None
        try:
            gym_env = deepdrive.start(args.experiment_name,
                                      args.env_id,
                                      fps=args.fps)
            log.info('Path follower drive mode')
            for episode in range(episode_count):
                if done:
                    gym_env.reset()
                while True:
                    action = deepdrive.action(has_control=False)
                    obz, reward, done, _ = gym_env.step(action)
                    if render:
                        gym_env.render()
                    if done:
                        gym_env.reset()
        except KeyboardInterrupt:
            log.info('keyboard interrupt detected, closing')
        except Exception as e:
            log.error('Error running agent. %s', e)
            if gym_env:
                gym_env.close()
            raise e
        if gym_env:
            gym_env.close()
        log.info('Last episode complete, closing')
    else:
        from tensorflow_agent import agent
        if args.record and not args.record_recovery_from_random_actions:
            args.path_follower = True
        agent.run(args.experiment_name,
                  should_record=args.record,
                  net_path=args.net_path,
                  env_id=args.env_id,
                  run_baseline_agent=args.baseline,
                  render=args.render,
                  camera_rigs=camera_rigs,
                  should_record_recovery_from_random_actions=args.
                  record_recovery_from_random_actions,
                  path_follower=args.path_follower,
                  fps=args.fps)