#!/usr/bin/env python # coding: utf-8 import os import re import requests from datetime import datetime from bs4 import BeautifulSoup from logya.core import Logya from logya.path import slugify, target_file from logya.writer import encode_content, write logya = Logya() logya.init_env() url = 'https://en.wikipedia.org/wiki/Bodyweight_exercise' html = requests.get(url).text soup = BeautifulSoup(html, 'lxml') replacements = { 'bams': 'bam', 'bodybuilders': 'bodybuilder', 'boots': 'boot', 'chairs': 'chair', 'climbers': 'climber', 'crosses': 'cross', 'curls': 'curl', 'darlings': 'darling', 'dips': 'dip', 'dogs': 'dog',
import pandas as pd from datetime import datetime from logya.core import Logya from logya.writer import write, encode_content parser = argparse.ArgumentParser( description='Create data map draft based on input CSV and arguments.') parser.add_argument('input_file', help='Name of the input file.') parser.add_argument('output_name', help='Name part of the generated content and CSV files.') args = parser.parse_args() L = Logya() L.init_env() now = datetime.now() # World Bank specific data loading and processing df = pd.read_csv(args.input_file, skiprows=4).dropna( axis='columns', how='all', thresh=10).rename(columns={'Country Code': 'iso3'}) years = [str(year) for year in range(1960, now.year + 1) if str(year) in df] columns = ['iso3'] + years df_final = df[columns] # Determine absolute min and max values for use in JS abs_min = df.min(numeric_only=True).min() if abs_min > 0 and abs_min < 1:
#!/usr/bin/env python # coding: utf-8 import os import re import requests from datetime import datetime from bs4 import BeautifulSoup from logya.core import Logya from logya.path import slugify, target_file from logya.writer import encode_content, write logya = Logya() logya.init_env() url = 'https://en.wikipedia.org/wiki/Bodyweight_exercise' html = requests.get(url).text soup = BeautifulSoup(html, 'lxml') replacements = { 'bams': 'bam', 'bodybuilders': 'bodybuilder', 'boots': 'boot', 'chairs': 'chair', 'climbers': 'climber', 'crosses': 'cross', 'curls': 'curl', 'darlings': 'darling', 'dips': 'dip', 'dogs': 'dog', 'extensions': 'extension',