Пример #1
0
    WR.counter.update(i)

    batch = next(LazyLoader.w300().loader_train_inf)
    real_img = batch["data"].cuda()
    landmarks = torch.clamp(next(LazyLoader.w300_landmarks(args.data_path).loader_train_inf).cuda(), max=1)
    heatmap_sum = heatmapper.forward(landmarks).sum(1, keepdim=True).detach()

    coefs = json.load(open(os.path.join(sys.path[0], "../parameters/cycle_loss_2.json")))

    fake, fake_latent = enc_dec.generate(heatmap_sum)
    fake_latent_pred = enc_dec.encode_latent(fake)

    gan_model_tuda.discriminator_train([real_img], [fake.detach()])
    (
        gan_model_tuda.generator_loss([real_img], [fake]) +
        l1_loss(fake_latent_pred, fake_latent) * coefs["style"]
    ).minimize_step(gan_model_tuda.optimizer.opt_min, style_opt)

    hm_pred = hg.forward(real_img)["hm_sum"]
    hm_ref = heatmapper.forward(landmarks).detach().sum(1, keepdim=True)
    gan_model_obratno.discriminator_train([hm_ref], [hm_pred.detach()])
    gan_model_obratno.generator_loss([hm_ref], [hm_pred]).__mul__(coefs["obratno"])\
        .minimize_step(gan_model_obratno.optimizer.opt_min)

    fake2, _ = enc_dec.generate(heatmap_sum)
    WR.writable("cycle", mes_loss.forward)(hg.forward(fake2)["mes"], UniformMeasure2D01(landmarks)).__mul__(coefs["hm"]) \
        .minimize_step(gan_model_tuda.optimizer.opt_min, gan_model_obratno.optimizer.opt_min)

    latent = enc_dec.encode_latent(g_transforms(image=real_img)["image"])
    restored = enc_dec.decode(hg.forward(real_img)["hm_sum"], latent)
    WR.writable("cycle2", psp_loss.forward)(real_img, real_img, restored, latent).__mul__(coefs["img"])\
Пример #2
0
                                max=1,
                                min=0)
        heatmap = heatmapper.forward(landmarks).detach()
    except Exception as e:
        print(e)
        print("input data exception")
        continue

    # coefs = json.load(open(os.path.join(sys.path[0], "../parameters/cycle_loss.json")))

    fake, fake_latent = enc_dec.generate(heatmap)
    fake_latent_pred = enc_dec.encode_latent(fake)

    gan_model_tuda.discriminator_train([real_img], [fake.detach()])
    (gan_model_tuda.generator_loss([real_img], [fake]) +
     l1_loss(fake_latent_pred, fake_latent) * args.style).minimize_step(
         gan_model_tuda.optimizer.opt_min, style_opt)

    hm_pred = hg.forward(real_img)["hm"]
    hm_ref = heatmapper.forward(landmarks).detach()
    gan_model_obratno.discriminator_train([hm_ref], [hm_pred.detach()])
    gan_model_obratno.generator_loss([hm_ref], [hm_pred]).__mul__(args.obratno)\
        .minimize_step(gan_model_obratno.optimizer.opt_min)

    fake2, _ = enc_dec.generate(heatmap)
    WR.writable("cycle", mes_loss.forward)(hg.forward(fake2)["mes"], UniformMeasure2D01(landmarks)).__mul__(args.hm)\
        .minimize_step(gan_model_tuda.optimizer.opt_min, gan_model_obratno.optimizer.opt_min)

    latent = enc_dec.encode_latent(cond_img)
    restored = enc_dec.decode(hg.forward(real_img)["hm"], latent)
    WR.writable("cycle2", psp_loss.forward)(real_img, real_img, restored, latent).__mul__(args.img)\
Пример #3
0
        open(os.path.join(sys.path[0], "../parameters/cycle_loss_2.json")))

    # WR.writable("sup", mes_loss.forward)(hg.forward(real_img)["mes"], UniformMeasure2D01(train_landmarks)).__mul__(coefs["sup"]) \
    #     .minimize_step(cont_opt)

    with torch.no_grad():
        pred = hg.forward(real_img)
        hm_pred = pred["hm_sum"].detach()
        mes_pred = pred["mes"].detach()

    fake, fake_latent = enc_dec.generate(hm_pred)
    fake_latent_pred = enc_dec.encode_latent(fake)

    gan_model_tuda.discriminator_train([real_img], [fake.detach()])
    (gan_model_tuda.generator_loss([real_img], [fake]) +
     l1_loss(fake_latent_pred, fake_latent) * coefs["style"]).minimize_step(
         gan_model_tuda.optimizer.opt_min, style_opt)

    train_content(cont_opt, R_b, R_t, real_img, hg)

    fake2, _ = enc_dec.generate(hm_pred)
    WR.writable("cycle", mes_loss.forward)(hg.forward(fake2)["mes"], mes_pred).__mul__(coefs["hm"]) \
        .minimize_step(gan_model_tuda.optimizer.opt_min, cont_opt)

    latent = enc_dec.encode_latent(g_transforms(image=real_img)["image"])
    restored = enc_dec.decode(hg.forward(real_img)["hm_sum"], latent)
    WR.writable("cycle2", psp_loss.forward)(real_img, real_img, restored, latent).__mul__(coefs["img"])\
        .minimize_step(gan_model_tuda.optimizer.opt_min, cont_opt, style_opt)

    # requires_grad(discriminator_img, False)
    # requires_grad(enc_dec.generator, False)
Пример #4
0
    batch = next(LazyLoader.w300().loader_train_inf)

    real_img = next(LazyLoader.w300().loader_train_inf)["data"].cuda()
    landmarks = torch.clamp(batch["meta"]["keypts_normalized"].cuda(),
                            max=1).cuda()
    heatmap_sum = heatmapper.forward(landmarks).sum(1, keepdim=True).detach()

    fake, fake_latent = enc_dec.generate(heatmap_sum)
    fake_latent_pred = enc_dec.encode_latent(fake)

    real_gan_img = real_img if i % 2 == 0 else next(
        LazyLoader.celeba().loader).cuda()

    gan_model_tuda.discriminator_train([real_gan_img], [fake.detach()])
    (gan_model_tuda.generator_loss([real_gan_img], [fake]) +
     l1_loss(fake_latent_pred, fake_latent)).minimize_step(
         gan_model_tuda.optimizer.opt_min, style_opt)

    latent = enc_dec.encode_latent(real_img)
    restored = enc_dec.decode(heatmap_sum, latent)
    WR.writable("cycle2", psp_loss.forward)(real_img, real_img, restored, latent).__mul__(20)\
        .minimize_step(gan_model_tuda.optimizer.opt_min, style_opt)

    image_accumulator.step(i)
    # enc_accumulator.step(i)

    if i % 10000 == 0 and i > 0:
        torch.save(
            {
                'gi': enc_dec.generator.state_dict(),
                'di': discriminator_img.state_dict(),