def add_arguments(parser): parser = LossParams.add_arguments(parser) parser.add_argument( "--optimizer", default="Adam", choices=optimizer.OPTIMIZER_NAMES, help="optimizer to train the network", ) parser.add_argument( "--val_epoch_freq", type=int, default=1, help="validation epoch frequency.", ) parser.add_argument("--learning_rate", type=float, default=0, help="Learning rate for the training. If <= 0 it will be set" " automatically to the default for the specified model adapter.") parser.add_argument("--batch_size", type=int, default=4) parser.add_argument("--num_epochs", type=int, default=20) parser.add_argument("--log_dir", help="folder to log tensorboard summary") parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen') parser.add_argument('--print_freq', type=int, default=1, help='frequency of showing training results on console') parser.add_argument('--save_epoch_freq', type=int, default=1, help='frequency of saving checkpoints at the end of epochs') return parser
def make_tag(params): return ( LossParams.make_str(params) + f"_LR{params.learning_rate}" + f"_BS{params.batch_size}" + f"_O{params.optimizer.lower()}" )