def valid(loader, model, epoch, writer, n_step): iou = AverageMeter() # semantic IoU iou_c = AverageMeter() # contour IoU iou_m = AverageMeter() # marker IoU losses = AverageMeter() only_contour = config['contour'].getboolean('exclusive') weight_map = config['param'].getboolean('weight_map') model_name = config['param']['model'] with_contour = config.getboolean(model_name, 'branch_contour') with_marker = config.getboolean(model_name, 'branch_marker') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Sets the model in evaluation mode. model.eval() for i, data in enumerate(loader): # get the inputs inputs = data['image'].to(device) labels = data['label'].to(device) labels_c = data['label_c'].to(device) labels_m = data['label_m'].to(device) # get loss weight weights = None if weight_map and 'weight' in data: weights = data['weight'].to(device) # forward step outputs = model(inputs) if with_contour and with_marker: outputs, outputs_c, outputs_m = outputs elif with_contour: outputs, outputs_c = outputs # compute loss if only_contour: loss = contour_criterion(outputs, labels_c) else: # weight_criterion equals to segment_criterion if weights is none loss = focal_criterion(outputs, labels, weights) if with_contour: loss += focal_criterion(outputs_c, labels_c, weights) if with_marker: loss += focal_criterion(outputs_m, labels_m, weights) # measure accuracy and record loss (Non-instance level IoU) losses.update(loss.item(), inputs.size(0)) if only_contour: batch_iou = iou_mean(outputs, labels_c) else: batch_iou = iou_mean(outputs, labels) iou.update(batch_iou, inputs.size(0)) if with_contour: batch_iou_c = iou_mean(outputs_c, labels_c) iou_c.update(batch_iou_c, inputs.size(0)) if with_marker: batch_iou_m = iou_mean(outputs_m, labels_m) iou_m.update(batch_iou_m, inputs.size(0)) # end of loop, dump epoch summary writer.add_scalar('CV/epoch_loss', losses.avg, epoch) writer.add_scalar('CV/epoch_iou', iou.avg, epoch) writer.add_scalar('CV/epoch_iou_c', iou_c.avg, epoch) writer.add_scalar('CV/epoch_iou_m', iou_m.avg, epoch) print( 'Epoch: [{0}]\t\tcross-validation\t' 'Loss: N/A (avg: {loss.avg:.4f})\t' 'IoU: {iou.avg:.3f} (Coutour: {iou_c.avg:.3f}, Marker: {iou_m.avg:.3f})\t' .format( epoch, loss=losses, iou=iou, iou_c=iou_c, iou_m=iou_m ) ) return iou.avg # return epoch average iou
writer = SummaryWriter(snapshot_path+'/log') logging.info("{} itertations per epoch".format(len(trainloader))) iter_num = 0 max_epoch = max_iterations//len(trainloader)+1 lr_ = base_lr net.train() for epoch_num in tqdm(range(max_epoch), ncols=70): time1 = time.time() for i_batch, sampled_batch in enumerate(trainloader): time2 = time.time() inputs, label, marker, contour = sampled_batch inputs, label, marker, contour = inputs.cuda(), label.cuda(), marker.cuda(), contour.cuda() outputs = net(inputs) loss = segment_criterion(outputs[:, 0, :, :].unsqueeze(0), label) + segment_criterion(outputs[:, 1, :, :].unsqueeze(0), marker) + contour_criterion(outputs[:, 2, :, :].unsqueeze(0), contour) optimizer.zero_grad() loss.backward() optimizer.step() iter_num=iter_num + 1 writer.add_scalar('lr', lr_, iter_num) writer.add_scalar('loss/loss', loss, iter_num) logging.info('iteration %d : loss : %f' % (iter_num, loss.item())) if iter_num % 50 == 0: image=inputs[0, :, :, :] writer.add_image('train/Image', image, iter_num) predict_seg=outputs[0, 0:1, :, :] writer.add_image('train/Predicted_label', predict_seg, iter_num)
def train(loader, model, optimizer, epoch, writer): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() iou = AverageMeter() # semantic IoU iou_c = AverageMeter() # contour IoU iou_m = AverageMeter() # marker IoU print_freq = config['train'].getfloat('print_freq') only_contour = config['contour'].getboolean('exclusive') weight_map = config['param'].getboolean('weight_map') model_name = config['param']['model'] with_contour = config.getboolean(model_name, 'branch_contour') with_marker = config.getboolean(model_name, 'branch_marker') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Sets the module in training mode. model.train() end = time.time() n_step = len(loader) for i, data in enumerate(loader): # measure data loading time data_time.update(time.time() - end) # split sample data inputs = data['image'].to(device) labels = data['label'].to(device) labels_c = data['label_c'].to(device) labels_m = data['label_m'].to(device) # get loss weight weights = None if weight_map and 'weight' in data: weights = data['weight'].to(device) # zero the parameter gradients optimizer.zero_grad() # forward step outputs = model(inputs) if with_contour and with_marker: outputs, outputs_c, outputs_m = outputs elif with_contour: outputs, outputs_c = outputs # compute loss if only_contour: loss = contour_criterion(outputs, labels_c) else: # weight_criterion equals to segment_criterion if weights is none loss = focal_criterion(outputs, labels, weights) if with_contour: loss += focal_criterion(outputs_c, labels_c, weights) if with_marker: loss += focal_criterion(outputs_m, labels_m, weights) # compute gradient and do backward step loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # measure accuracy and record loss # NOT instance-level IoU in training phase, for better speed & instance separation handled in post-processing losses.update(loss.item(), inputs.size(0)) if only_contour: batch_iou = iou_mean(outputs, labels_c) else: batch_iou = iou_mean(outputs, labels) iou.update(batch_iou, inputs.size(0)) if with_contour: batch_iou_c = iou_mean(outputs_c, labels_c) iou_c.update(batch_iou_c, inputs.size(0)) if with_marker: batch_iou_m = iou_mean(outputs_m, labels_m) iou_m.update(batch_iou_m, inputs.size(0)) # log to summary #step = i + epoch * n_step #writer.add_scalar('training/loss', loss.item(), step) #writer.add_scalar('training/batch_elapse', batch_time.val, step) #writer.add_scalar('training/batch_iou', iou.val, step) #writer.add_scalar('training/batch_iou_c', iou_c.val, step) #writer.add_scalar('training/batch_iou_m', iou_m.val, step) if (i + 1) % print_freq == 0: print( 'Epoch: [{0}][{1}/{2}]\t' 'Time: {batch_time.avg:.2f} (io: {data_time.avg:.2f})\t' 'Loss: {loss.val:.4f} (avg: {loss.avg:.4f})\t' 'IoU: {iou.avg:.3f} (Coutour: {iou_c.avg:.3f}, Marker: {iou_m.avg:.3f})\t' .format( epoch, i, n_step, batch_time=batch_time, data_time=data_time, loss=losses, iou=iou, iou_c=iou_c, iou_m=iou_m ) ) # end of loop, dump epoch summary writer.add_scalar('training/epoch_loss', losses.avg, epoch) writer.add_scalar('training/epoch_iou', iou.avg, epoch) writer.add_scalar('training/epoch_iou_c', iou_c.avg, epoch) writer.add_scalar('training/epoch_iou_m', iou_m.avg, epoch) return iou.avg # return epoch average iou
def valid(loader, model, epoch, writer, n_step): iou = AverageMeter() # semantic IoU iou_c = AverageMeter() # contour IoU iou_m = AverageMeter() # marker IoU losses = AverageMeter() only_contour = config['contour'].getboolean('exclusive') weight_map = config['param'].getboolean('weight_map') # Sets the model in evaluation mode. model.eval() for i, data in enumerate(loader): # get the inputs inputs, labels, labels_c, labels_m = data['image'], data['label'], data['label_c'], data['label_m'] if torch.cuda.is_available(): inputs, labels, labels_c, labels_m = inputs.cuda(), labels.cuda(), labels_c.cuda(), labels_m.cuda() # wrap them in Variable inputs, labels, labels_c, labels_m = Variable(inputs), Variable(labels), Variable(labels_c), Variable(labels_m) # get loss weight weights = None if weight_map and 'weight' in data: weights = data['weight'] if torch.cuda.is_available(): weights = weights.cuda(async=True) weights = Variable(weights) # forward step outputs = model(inputs) if isinstance(model, CAMUNet): outputs, outputs_c, outputs_m = outputs elif isinstance(model, DCAN) or isinstance(model, CAUNet): outputs, outputs_c = outputs # compute loss if only_contour: loss = contour_criterion(outputs, labels_c) else: # weight_criterion equals to segment_criterion if weights is none loss = focal_criterion(outputs, labels, weights) if isinstance(model, CAMUNet): loss += focal_criterion(outputs_c, labels_c, weights) loss += focal_criterion(outputs_m, labels_m, weights) if isinstance(model, DCAN) or isinstance(model, CAUNet): loss += focal_criterion(outputs_c, labels_c, weights) # measure accuracy and record loss (Non-instance level IoU) losses.update(loss.data[0], inputs.size(0)) if only_contour: batch_iou = iou_mean(outputs, labels_c) else: batch_iou = iou_mean(outputs, labels) iou.update(batch_iou, inputs.size(0)) if isinstance(model, CAMUNet): batch_iou_c, batch_iou_m = iou_mean(outputs_c, labels_c), iou_mean(outputs_m, labels_m) iou_c.update(batch_iou_c, inputs.size(0)) iou_m.update(batch_iou_m, inputs.size(0)) elif isinstance(model, DCAN) or isinstance(model, CAUNet): batch_iou_c = iou_mean(outputs_c, labels_c) iou_c.update(batch_iou_c, inputs.size(0)) # end of loop, dump epoch summary writer.add_scalar('CV/epoch_loss', losses.avg, epoch) writer.add_scalar('CV/epoch_iou', iou.avg, epoch) writer.add_scalar('CV/epoch_iou_c', iou_c.avg, epoch) writer.add_scalar('CV/epoch_iou_m', iou_m.avg, epoch) print( 'Epoch: [{0}]\t\tcross-validation\t' 'Loss: N/A (avg: {loss.avg:.4f})\t' 'IoU: {iou.avg:.3f} (Coutour: {iou_c.avg:.3f}, Marker: {iou_m.avg:.3f})\t' .format( epoch, loss=losses, iou=iou, iou_c=iou_c, iou_m=iou_m ) )