Пример #1
0
def main(args):
    torch.cuda.set_device(args.gpu)

    # Network Builders
    builder = ModelBuilder()

    unet = builder.build_unet(num_class=args.num_class,
                              arch=args.arch_unet,
                              weights=args.weights_unet1)

    crit = DualLoss(mode='val')

    sm = SegmentationModule(crit, unet)
    test_augs = ComposeTest([PaddingCenterCropTest(256)])

    ac17 = AC17(root=args.data_root,
                augmentations=test_augs,
                img_norm=args.img_norm)

    loader_val = data.DataLoader(ac17,
                                 batch_size=1,
                                 shuffle=False,
                                 collate_fn=user_scattered_collate,
                                 num_workers=5,
                                 drop_last=True)

    sm.cuda()

    # Main loop
    evaluate(sm, loader_val, args)

    print('Evaluation Done!')
Пример #2
0
def main(args):
    # Network Builders
    builder = ModelBuilder()

    unet = builder.build_unet(num_class=args.num_class,
        arch=args.unet_arch,
        weights=args.weights_unet)

    print("Froze the following layers: ")
    for name, p in unet.named_parameters():
        if p.requires_grad == False:
            print(name)
    print()

    crit = DualLoss(mode="train")

    segmentation_module = SegmentationModule(crit, unet)

    test_augs = Compose([PaddingCenterCrop(256)])
    
    print("ready to load data")

    dataset_val = LungData( 
            root=args.data_root,
            split='test',
            k_split=args.k_split,
            augmentations=test_augs)

    
    loader_val = data.DataLoader(
        dataset_val,
        batch_size=1,
        shuffle=False,
        collate_fn=user_scattered_collate,
        num_workers=5,
        drop_last=True)

    print(len(loader_val))

    # load nets into gpu
    if len(args.gpus) > 1:
        segmentation_module = UserScatteredDataParallel(
            segmentation_module,
            device_ids=args.gpus)
        # For sync bn
        patch_replication_callback(segmentation_module)
    segmentation_module.cuda()

    # Set up optimizers
    nets = (net_encoder, net_decoder, crit) if args.unet == False else (unet, crit)
    optimizers = create_optimizers(nets, args)

    '''
    # Start the webapp: user update a dcm file, output the predicted segmentation pic of it
    inp = gradio.inputs.DcmUpload(preprocessing_fn=preprocess)
    #inp = gradio.inputs.ImageUpload(preprocessing_fn=preprocess)
    io = gradio.Interface(inputs=inp, outputs="image", model_type="lung_seg", model=segmentation_module, args=args)
    io.launch(validate=False)
    '''

    iou, loss = eval(loader_val, segmentation_module, args, crit)
    print('Evaluation Done!')
Пример #3
0
        ''''''
        #build model
        builder = ModelBuilder()

        unet = builder.build_unet(num_class=args.num_class,
            arch=args.unet_arch,
            weights=args.weights_unet)

        print("Froze the following layers: ")
        for name, p in unet.named_parameters():
            if p.requires_grad == False:
                print(name)
        print()

        crit = DualLoss(mode="train")

        segmentation_module = SegmentationModule(crit, unet)

        # load nets into gpu
        if len(args.gpus) > 1:
            segmentation_module = UserScatteredDataParallel(
                segmentation_module,
                device_ids=args.gpus)
            # For sync bn
            patch_replication_callback(segmentation_module)
        segmentation_module.cuda()

        print("ready to load data")

        import train
Пример #4
0
def main(args):
    # Network Builders
    builder = ModelBuilder()

    unet = builder.build_unet(num_class=args.num_class,
        arch=args.unet_arch,
        weights=args.weights_unet)

    print("Froze the following layers: ")
    for name, p in unet.named_parameters():
        if p.requires_grad == False:
            print(name)
    print()

    crit = DualLoss(mode="train")

    segmentation_module = SegmentationModule(crit, unet)

    train_augs = Compose([PaddingCenterCrop(256), RandomHorizontallyFlip(), RandomVerticallyFlip(), RandomRotate(180)])
    test_augs = Compose([PaddingCenterCrop(256)])

    # Dataset and Loader
    dataset_train = AC17( #Loads 3D volumes
            root=args.data_root,
            split='train',
            k_split=args.k_split,
            augmentations=train_augs,
            img_norm=args.img_norm)
    ac17_train = load2D(dataset_train, split='train', deform=True) #Dataloader for 2D slices. Requires 3D loader.

    loader_train = data.DataLoader(
        ac17_train,
        batch_size=args.batch_size_per_gpu,
        shuffle=True,
        num_workers=int(args.workers),
        drop_last=True,
        pin_memory=True)

    dataset_val = AC17(
            root=args.data_root,
            split='val',
            k_split=args.k_split,
            augmentations=test_augs,
            img_norm=args.img_norm)

    ac17_val = load2D(dataset_val, split='val', deform=False)

    loader_val = data.DataLoader(
        ac17_val,
        batch_size=1,
        shuffle=False,
        collate_fn=user_scattered_collate,
        num_workers=5,
        drop_last=True)

    # load nets into gpu
    if len(args.gpus) > 1:
        segmentation_module = UserScatteredDataParallel(
            segmentation_module,
            device_ids=args.gpus)
        # For sync bn
        patch_replication_callback(segmentation_module)
    segmentation_module.cuda()

    # Set up optimizers
    nets = (net_encoder, net_decoder, crit) if args.unet == False else (unet, crit)
    optimizers = create_optimizers(nets, args)

    # Main loop
    history = {'train': {'epoch': [], 'loss': [], 'acc': [], 'jaccard': []}}
    best_val = {'epoch_1': 0, 'mIoU_1': 0,
                'epoch_2': 0, 'mIoU_2': 0,
                'epoch_3': 0, 'mIoU_3': 0,
                'epoch' : 0, 'mIoU': 0}

    for epoch in range(args.start_epoch, args.num_epoch + 1):
        train(segmentation_module, loader_train, optimizers, history, epoch, args)
        iou, loss = eval(loader_val, segmentation_module, args, crit)
        #checkpointing
        ckpted = False
        if loss < 0.215:
            ckpted = True
        if iou[0] > best_val['mIoU_1']:
            best_val['epoch_1'] = epoch
            best_val['mIoU_1'] = iou[0]
            ckpted = True

        if iou[1] > best_val['mIoU_2']:
            best_val['epoch_2'] = epoch
            best_val['mIoU_2'] = iou[1]
            ckpted = True

        if iou[2] > best_val['mIoU_3']:
            best_val['epoch_3'] = epoch
            best_val['mIoU_3'] = iou[2]
            ckpted = True

        if (iou[0]+iou[1]+iou[2])/3 > best_val['mIoU']:
            best_val['epoch'] = epoch
            best_val['mIoU'] = (iou[0]+iou[1]+iou[2])/3
            ckpted = True

        if epoch % 50 == 0:
            checkpoint(nets, history, args, epoch)
            continue

        if epoch == args.num_epoch:
            checkpoint(nets, history, args, epoch)
            continue
        if epoch < 15:
            ckpted = False
        if ckpted == False:
            continue
        else:
            checkpoint(nets, history, args, epoch)
            continue
        print()

    print('Training Done!')