Пример #1
0
def train_one_epoch(model,
                    optimizer,
                    dataloader,
                    writer,
                    epoch,
                    device,
                    loss_type='bce',
                    write_steps=50):
    model.train()

    for step, ((context, context_len),
               (answer,
                answer_len)) in enumerate(dataloader,
                                          start=epoch * len(dataloader)):
        # print(context.shape, answer.shape)
        optimizer.zero_grad()
        context_embeddings = model(
            context.to(device))  # [batch_size, emb_size]
        answer_embeddings = model(answer.to(device))  # [batch_size, emb_size]

        if loss_type == 'bce':
            loss = bce(context_embeddings, answer_embeddings)
        elif loss_type == 'triplet':
            loss = triplet_loss(context_embeddings, answer_embeddings)
        else:
            raise NotImplemented('No such loss')

        if step % write_steps == 0:
            print(
                f'Epoch = {epoch}, step = {step}, train_loss = {loss.item()}')
            write_metrics(writer, step, loss.item())
        loss.backward()
        optimizer.step()
Пример #2
0
def create_models(backbone_retinanet,
                  num_classes,
                  weights,
                  args,
                  num_gpus=0,
                  freeze_backbone=False,
                  lr=1e-5,
                  config=None):
    """
    Creates three models (model, training_model, prediction_model).

    Args
        backbone_retinanet: A function to call to create a retinanet model with a given backbone.
        num_classes: The number of classes to train.
        weights: The weights to load into the model.
        num_gpus: The number of GPUs to use for training.
        freeze_backbone: If True, disables learning for the backbone.
        config: Config parameters, None indicates the default configuration.

    Returns
        model: The base model. This is also the model that is saved in snapshots.
        training_model: The training model. If num_gpus=0, this is identical to model.
        prediction_model: The model wrapped with utility functions to perform object detection (applies regression values and performs NMS).
    """

    modifier = freeze_model if freeze_backbone else None

    # Keras recommends initialising a multi-gpu model on the CPU to ease weight sharing, and to prevent OOM errors.
    # optionally wrap in a parallel model
    if num_gpus > 1:
        from keras.utils import multi_gpu_model
        with tf.device('/cpu:0'):
            model = model_with_weights(backbone_retinanet(num_classes,
                                                          modifier=modifier),
                                       weights=weights,
                                       skip_mismatch=True)
        training_model = multi_gpu_model(model, gpus=num_gpus)
    else:
        model = model_with_weights(backbone_retinanet(num_classes,
                                                      modifier=modifier),
                                   weights=weights,
                                   skip_mismatch=True)
        training_model = model

    # make prediction model
    prediction_model = retinanet_bbox(model=model)

    # compile model
    training_model.compile(loss={
        'regression':
        losses.iou_loss(args.loss, args.loss_weight),
        'classification':
        losses.focal(),
        'centerness':
        losses.bce(),
    },
                           optimizer=keras.optimizers.adam(lr=lr))

    return model, training_model, prediction_model
Пример #3
0
    def __init__(self, backbone):
        # a dictionary mapping custom layer names to the correct classes
        self.custom_objects = {
            'UpsampleLike': layers.UpsampleLike,
            'PriorProbability': initializers.PriorProbability,
            'RegressBoxes': layers.RegressBoxes,
            'FilterDetections': layers.FilterDetections,
            'Anchors': layers.Anchors,
            'ClipBoxes': layers.ClipBoxes,
            '_focal': losses.focal(),
            'bce_': losses.bce(),
            'iou_': losses.iou(),
        }

        self.backbone = backbone
        self.validate()
Пример #4
0
def evaluate(model, dataloader, writer, epoch, device, loss_type='bce'):
    contexts = []
    answers = []

    model.eval()
    loss_history = []
    for (context, context_len), (answer, answer_len) in dataloader:
        context_embeddings = model(
            context.to(device))  # [batch_size, emb_size]
        answer_embeddings = model(answer.to(device))  # [batch_size, emb_size]

        if loss_type == 'bce':
            loss = bce(context_embeddings, answer_embeddings)
        elif loss_type == 'triplet':
            loss = triplet_loss(context_embeddings, answer_embeddings)
        else:
            raise NotImplemented('No such loss')
        loss_history.append(loss.item())

        contexts.append(context_embeddings.cpu().detach().numpy())
        answers.append(answer_embeddings.cpu().detach().numpy())

    loss_value = np.mean(loss_history)

    contexts = np.array(contexts).reshape(-1, contexts[-1].shape[-1])
    answers = np.array(answers).reshape(-1, answers[-1].shape[-1])

    emb_size = answers.shape[1]
    faiss_index = faiss.IndexFlat(emb_size)

    faiss_index.verbose = True
    faiss_index.add(answers)
    _, indexes = faiss_index.search(contexts, k=100)

    mrr = calculate_mrr(y_true=np.arange(indexes.shape[0]).reshape(-1, 1),
                        preds=indexes)
    write_metrics(writer,
                  epoch * len(dataloader),
                  loss_value,
                  mrr=mrr,
                  prefix='eval')
    print(
        f'Epoch = {epoch}, step = {epoch * len(dataloader)}, eval_loss = {loss_value}, mrr = {mrr}'
    )
Пример #5
0
    def validate(self, epoch, output_save):
        self.model.eval()
        batch_loss_bce = 0.0
        batch_loss_l1 = 0.0
        batch_iou = 0.0
        vis_save = os.path.join(output_save, "epoch%02d" % (epoch + 1))

        n_batches = len(self.dataloader_val)
        with torch.no_grad():
            for idx, sample in enumerate(self.dataloader_val):
                input = sample['occ_grid'].to(self.device)
                target_occ = sample['occ_gt'].to(self.device)
                target_df = sample['occ_df_gt'].to(self.device)
                names = sample['name']

                # ===================forward=====================
                output_occ = self.model(input)
                loss_bce = losses.bce(output_occ, target_occ)

                # Convert occ to df to calculate l1 loss
                output_df = utils.occs_to_dfs(output_occ,
                                              trunc=args.truncation,
                                              pred=True)
                loss_l1 = losses.l1(output_df, target_df)
                iou = metric.iou_occ(output_occ, target_occ)

                # ===================log========================
                batch_loss_bce += loss_bce.item()
                batch_loss_l1 += loss_l1.item()
                batch_iou += iou

                # save the predictions at the end of the epoch
                # if epoch > args.save_epoch and (idx + 1) == n_batches-1:
                #     pred_occs = output_occ[:args.n_vis+1]
                #     target_occs = target_occ[:args.n_vis+1]
                #     names = names[:args.n_vis+1]
                #     utils.save_predictions(vis_save, args.model_name, args.gt_type, names, pred_dfs=None, target_dfs=None,
                #                            pred_occs=pred_occs, target_occs=target_occs)

            val_loss_bce = batch_loss_bce / (idx + 1)
            val_loss_l1 = batch_loss_l1 / (idx + 1)
            mean_iou = batch_iou / (idx + 1)
            return val_loss_bce, val_loss_l1, mean_iou
Пример #6
0
    def train(self):
        self.model.train()
        batch_loss = 0.0

        for idx, sample in enumerate(self.dataloader_train):
            input = sample['occ_grid'].to(self.device)
            target_occ = sample['occ_gt'].to(self.device)

            # zero the parameter gradients
            self.optimizer.zero_grad()

            # ===================forward=====================
            output_occ = self.model(input)
            loss = losses.bce(output_occ, target_occ)
            # ===================backward + optimize====================
            loss.backward()
            self.optimizer.step()

            # ===================log========================
            batch_loss += loss.item()

        train_loss = batch_loss / (idx + 1)
        return train_loss
Пример #7
0
    def train(self, epochs, backbone_name, evaluation):
        #Compile model
        self.model.compile(
            loss={
                'regression': losses.iou(),
                'classification': losses.focal(),
                'centerness': losses.bce(),
            },
            optimizer=keras.optimizers.adam(lr=1e-5)
            # optimizer=keras.optimizers.sgd(lr=1e-5, momentum=0.9, decay=1e-5, nesterov=True)
        )
        # create the generators
        train_generator, validation_generator = create_generators(
            self.config, self.dataset)

        # create the callbacks
        callbacks = create_callbacks(
            self.config,
            backbone_name,
            self.model,
            self.training_model,
            self.prediction_model,
            validation_generator,
            evaluation,
            self.log_dir,
        )
        # start training
        return self.training_model.fit_generator(
            generator=train_generator,
            initial_epoch=0,
            steps_per_epoch=self.config.STEPS_PER_EPOCH,
            epochs=epochs,
            verbose=1,
            callbacks=callbacks,
            max_queue_size=10,
            validation_data=validation_generator)
Пример #8
0
def main(args=None):

    # create object that stores backbone information
    backbone = models.backbone(args.backbone)

    # create the generators
    train_generator, validation_generator = create_generators(
        args, backbone.preprocess_image)

    # create the model
    if args.snapshot is not None:
        print('Loading model, this may take a second...')
        model = models.load_model(args.snapshot, backbone_name=args.backbone)
        training_model = model
        anchor_params = None
        if args.config and 'anchor_parameters' in args.config:
            anchor_params = parse_anchor_parameters(args.config)
        prediction_model = retinanet_bbox(model=model,
                                          anchor_params=anchor_params)
        # compile model
        training_model.compile(
            loss={
                'regression': losses.iou_loss(args.loss, args.loss_weight),
                'classification': losses.focal(),
                'centerness': losses.bce(),
            },
            optimizer=keras.optimizers.Adam(lr=1e-5)
            # optimizer=keras.optimizers.sgd(lr=1e-5, momentum=0.9, decay=1e-5, nesterov=True)
        )

    else:
        weights = args.weights
        # default to imagenet if nothing else is specified
        if weights is None and args.imagenet_weights:
            weights = backbone.download_imagenet()

        print('Creating model, this may take a second...')
        model, training_model, prediction_model = create_models(
            backbone_retinanet=backbone.retinanet,
            num_classes=train_generator.num_classes(),
            weights=weights,
            num_gpus=args.num_gpus,
            freeze_backbone=args.freeze_backbone,
            lr=args.lr,
            config=args.config,
            args=args)

    parallel_model = multi_gpu_model(training_model, gpus=2)
    parallel_model.compile(loss={
        'regression':
        losses.iou_loss(args.loss, args.loss_weight),
        'classification':
        losses.focal(),
        'centerness':
        losses.bce(),
    },
                           optimizer=keras.optimizers.Adam(lr=1e-4))

    # print model summary
    # print(model.summary())

    # this lets the generator compute backbone layer shapes using the actual backbone model
    if 'vgg' in args.backbone or 'densenet' in args.backbone:
        train_generator.compute_shapes = make_shapes_callback(model)
        if validation_generator:
            validation_generator.compute_shapes = train_generator.compute_shapes

    # create the callbacks
    callbacks = create_callbacks(
        model,
        training_model,
        prediction_model,
        validation_generator,
        args,
    )

    if not args.compute_val_loss:
        validation_generator = None

    # start training
    parallel_model.fit_generator(generator=train_generator,
                                 steps_per_epoch=len(train_generator),
                                 epochs=args.epochs,
                                 verbose=1,
                                 callbacks=callbacks,
                                 validation_data=validation_generator)
Пример #9
0
def main(args=None):
    # parse arguments
    if args is None:
        args = sys.argv[1:]
    args = parse_args(args)

    # create object that stores backbone information
    backbone = models.backbone(args.backbone)

    # make sure keras is the minimum required version
    check_keras_version()

    # optionally choose specific GPU
    if args.gpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    keras.backend.tensorflow_backend.set_session(get_session())

    # optionally load config parameters
    if args.config:
        args.config = read_config_file(args.config)

    # create the generators
    train_generator, validation_generator = create_generators(
        args, backbone.preprocess_image)

    # create the model
    if args.snapshot is not None:
        print('Loading model, this may take a second...')
        model = models.load_model(args.snapshot, backbone_name=args.backbone)
        training_model = model
        anchor_params = None
        if args.config and 'anchor_parameters' in args.config:
            anchor_params = parse_anchor_parameters(args.config)
        prediction_model = retinanet_bbox(model=model,
                                          anchor_params=anchor_params)
        # compile model
        training_model.compile(
            loss={
                'regression': losses.iou(),
                'classification': losses.focal(),
                'centerness': losses.bce(),
            },
            optimizer=keras.optimizers.adam(lr=1e-5)
            # optimizer=keras.optimizers.sgd(lr=1e-5, momentum=0.9, decay=1e-5, nesterov=True)
        )
    else:
        weights = args.weights
        # default to imagenet if nothing else is specified
        if weights is None and args.imagenet_weights:
            weights = backbone.download_imagenet()

        print('Creating model, this may take a second...')
        model, training_model, prediction_model = create_models(
            backbone_retinanet=backbone.retinanet,
            num_classes=train_generator.num_classes(),
            weights=weights,
            num_gpus=args.num_gpus,
            freeze_backbone=args.freeze_backbone,
            lr=args.lr,
            config=args.config)

    # print model summary
    # print(model.summary())

    # this lets the generator compute backbone layer shapes using the actual backbone model
    if 'vgg' in args.backbone or 'densenet' in args.backbone:
        train_generator.compute_shapes = make_shapes_callback(model)
        if validation_generator:
            validation_generator.compute_shapes = train_generator.compute_shapes

    # create the callbacks
    callbacks = create_callbacks(
        model,
        training_model,
        prediction_model,
        validation_generator,
        args,
    )

    if not args.compute_val_loss:
        validation_generator = None

    # start training
    return training_model.fit_generator(
        generator=train_generator,
        initial_epoch=0,
        steps_per_epoch=args.steps,
        epochs=args.epochs,
        verbose=1,
        callbacks=callbacks,
        workers=args.workers,
        use_multiprocessing=args.multiprocessing,
        max_queue_size=args.max_queue_size,
        validation_data=validation_generator)