Пример #1
0
    def _sg_losses(self, ops={}, suffix=''):
        ops = self._frc_losses(ops, suffix)
        rel_score = self.get_output('rel_score'+suffix)
        cls_score = self.get_output('cls_score' + suffix)
        ops['cls_score'] = cls_score
        ops['rel_score'] = rel_score
        ops['cls_pred'] = self.get_output('cls_pred'+suffix)
        ops['predicates'] = self.data['predicates']
        ops['rel_rois'] = self.data['rel_rois']
        ops['relations'] = self.data['relations']
        relations = self.data['relations']
        ops['labels'] = self.data['labels']
        ops['Xr'] = self.Xr
        cls_pred = self.get_output('cls_pred'+suffix)
        sbjs = tf.gather(cls_pred, relations[:, 0])
        sbjs = tf.expand_dims(sbjs,1)
        objs = tf.gather(cls_pred,relations[:,1])
        objs = tf.expand_dims(objs,1)
        ops['indices'] = tf.cast(tf.concat(concat_dim=1, values=[sbjs,objs]),tf.int32)
        ops['Xr'] = tf.gather_nd(params=self.Xr, indices=tf.concat(concat_dim=1, values=ops['indices']))

        # point-wise multiplication
        ops['Xr'] = tf.nn.softmax(ops['Xr']) # apply softmax
        res = 1 - self.mask
        # rel_score = tf.multiply(rel_score, ops['Xr'])
        rel_score = rel_score * (res + (self.mask*ops['Xr']))
        ops['loss_rel'+suffix] = losses.sparse_softmax(rel_score, self.data['predicates'],
                                                       name='rel_loss'+suffix, ignore_bg=True)
        return ops
Пример #2
0
 def _sg_losses(self, ops={}, suffix=''):
     ops = self._frc_losses(ops, suffix)
     rel_score = self.get_output('rel_score' + suffix)
     ops['loss_rel' + suffix] = losses.sparse_softmax(
         rel_score,
         self.data['predicates'],
         name='rel_loss' + suffix,
         ignore_bg=True)
     return ops
Пример #3
0
    def _frc_losses(self, ops={}, suffix=''):
        # classification loss
        cls_score = self.get_output('cls_score'+suffix)
        # ops['cls_score' + "_0"] = cls_score
        # ops['y_outs']
        ops['loss_cls'+suffix] = losses.sparse_softmax(cls_score, self.data['labels'], name='cls_loss'+suffix)

        # bounding box regression L1 loss
        if cfg.TRAIN.BBOX_REG:
            bbox_pred = self.get_output('bbox_pred'+suffix)
            ops['loss_box'+suffix]  = losses.l1_loss(bbox_pred, self.data['bbox_targets'], 'reg_loss'+suffix,
                                                     self.data['bbox_inside_weights'])
        else:
            print('NO BBOX REGRESSION!!!!!')
        return ops
Пример #4
0
    with sess.as_default():

        if FLAGS.random_seed is not None:
            tf.set_random_seed(FLAGS.random_seed)

        # Build execution graph
        network = BiDirectional_LSTM(sess, init, next_batch_x, features_size,
                                     FLAGS.attention, FLAGS.attention_size)

        eval_predictions, endings, train_logits = network.build_model()

        # Compare with next_batch_endings_y
        if FLAGS.loss_function == "SIGMOID":
            loss = losses.sigmoid(next_batch_endings_y, train_logits)
        elif FLAGS.loss_function == "SOFTMAX":
            loss = losses.sparse_softmax(next_batch_endings_y, endings)
        else:
            raise RuntimeError(
                f"Loss function {FLAGS.loss_function} not supported.")

        accuracy = tf.reduce_mean(
            tf.cast(tf.equal(eval_predictions, next_batch_endings_y),
                    dtype=tf.float32))
        """Initialize iterators"""
        train_handle = sess.run(train_iterator.string_handle())
        test_handle = sess.run(test_iterator.string_handle())

        if FLAGS.use_train_set:
            sess.run(train_iterator.initializer,
                     feed_dict={}
                     if FLAGS.use_skip_thoughts else {input_x: sentences})