def main(args): # Validate if args.pol not in ('EW', 'NS'): raise ValueError("Invalid polarization: %s" % args.pol) # Get the site information if args.lwasv: nam = 'lwasv' sta = stations.lwasv elif args.ovrolwa: nam = 'ovro' sta = stations.lwa1 sta.lat, sta.lon, sta.elev = ('37.23977727', '-118.2816667', 1182.89) else: nam = 'lwa1' sta = stations.lwa1 # Read in the skymap (GSM or LF map @ 74 MHz) if not args.lfsm: smap = skymap.SkyMapGSM(freq_MHz=args.frequency/1e6) if args.verbose: print("Read in GSM map at %.2f MHz of %s pixels; min=%f, max=%f" % (args.frequency/1e6, len(smap.ra), smap._power.min(), smap._power.max())) else: smap = skymap.SkyMapLFSM(freq_MHz=args.frequency/1e6) if args.verbose: print("Read in LFSM map at %.2f MHz of %s pixels; min=%f, max=%f" % (args.frequency/1e6, len(smap.ra), smap._power.min(), smap._power.max())) # Get the emperical model of the beam and compute it for the correct frequencies beamDict = numpy.load(os.path.join(dataPath, 'lwa1-dipole-emp.npz')) if args.pol == 'EW': beamCoeff = beamDict['fitX'] else: beamCoeff = beamDict['fitY'] try: beamDict.close() except AttributeError: pass alphaE = numpy.polyval(beamCoeff[0,0,:], args.frequency) betaE = numpy.polyval(beamCoeff[0,1,:], args.frequency) gammaE = numpy.polyval(beamCoeff[0,2,:], args.frequency) deltaE = numpy.polyval(beamCoeff[0,3,:], args.frequency) alphaH = numpy.polyval(beamCoeff[1,0,:], args.frequency) betaH = numpy.polyval(beamCoeff[1,1,:], args.frequency) gammaH = numpy.polyval(beamCoeff[1,2,:], args.frequency) deltaH = numpy.polyval(beamCoeff[1,3,:], args.frequency) if args.verbose: print("Beam Coeffs. X: a=%.2f, b=%.2f, g=%.2f, d=%.2f" % (alphaH, betaH, gammaH, deltaH)) print("Beam Coeffs. Y: a=%.2f, b=%.2f, g=%.2f, d=%.2f" % (alphaE, betaE, gammaE, deltaE)) if args.empirical: corrDict = numpy.load(os.path.join(dataPath, 'lwa1-dipole-cor.npz')) cFreqs = corrDict['freqs'] cAlts = corrDict['alts'] if corrDict['degrees'].item(): cAlts *= numpy.pi / 180.0 cCorrs = corrDict['corrs'] corrDict.close() if args.frequency/1e6 < cFreqs.min() or args.frequency/1e6 > cFreqs.max(): print("WARNING: Input frequency of %.3f MHz is out of range, skipping correction" % (args.frequency/1e6,)) corrFnc = None else: fCors = cAlts*0.0 for i in range(fCors.size): ffnc = interp1d(cFreqs, cCorrs[:,i], bounds_error=False) fCors[i] = ffnc(args.frequency/1e6) corrFnc = interp1d(cAlts, fCors, bounds_error=False) else: corrFnc = None def compute_beam_pattern(az, alt, corr=corrFnc): zaR = numpy.pi/2 - alt*numpy.pi / 180.0 azR = az*numpy.pi / 180.0 c = 1.0 if corrFnc is not None: c = corrFnc(alt*numpy.pi / 180.0) c = numpy.where(numpy.isfinite(c), c, 1.0) pE = (1-(2*zaR/numpy.pi)**alphaE)*numpy.cos(zaR)**betaE + gammaE*(2*zaR/numpy.pi)*numpy.cos(zaR)**deltaE pH = (1-(2*zaR/numpy.pi)**alphaH)*numpy.cos(zaR)**betaH + gammaH*(2*zaR/numpy.pi)*numpy.cos(zaR)**deltaH return c*numpy.sqrt((pE*numpy.cos(azR))**2 + (pH*numpy.sin(azR))**2) if args.do_plot: az = numpy.zeros((90,360)) alt = numpy.zeros((90,360)) for i in range(360): az[:,i] = i for i in range(90): alt[i,:] = i pylab.figure(1) pylab.title("Beam Response: %s pol. @ %0.2f MHz" % (args.pol, args.frequency/1e6)) pylab.imshow(compute_beam_pattern(az, alt), extent=(0,359, 0,89), origin='lower') pylab.xlabel("Azimuth [deg]") pylab.ylabel("Altitude [deg]") pylab.grid(1) pylab.draw() # Calculate times in both site LST and UTC t0 = astro.get_julian_from_sys() lst = astro.get_local_sidereal_time(sta.long*180.0/math.pi, t0) / 24.0 t0 -= lst*(23.933/24.0) # Compensate for shorter sidereal days times = numpy.arange(0.0, 1.0, args.time_step/1440.0) + t0 lstList = [] powListAnt = [] for t in times: # Project skymap to site location and observation time pmap = skymap.ProjectedSkyMap(smap, sta.lat*180.0/math.pi, sta.long*180.0/math.pi, t) lst = astro.get_local_sidereal_time(sta.long*180.0/math.pi, t) lstList.append(lst) # Convolution of user antenna pattern with visible skymap gain = compute_beam_pattern(pmap.visibleAz, pmap.visibleAlt) powerAnt = (pmap.visiblePower * gain).sum() / gain.sum() powListAnt.append(powerAnt) if args.verbose: lstH = int(lst) lstM = int((lst - lstH)*60.0) lstS = ((lst - lstH)*60.0 - lstM)*60.0 sys.stdout.write("LST: %02i:%02i:%04.1f, Power_ant: %.1f K\r" % (lstH, lstM, lstS, powerAnt)) sys.stdout.flush() sys.stdout.write("\n") # plot results if args.do_plot: pylab.figure(2) pylab.title("Driftcurve: %s pol. @ %0.2f MHz - %s" % \ (args.pol, args.frequency/1e6, nam.upper())) pylab.plot(lstList, powListAnt, "ro", label="Antenna Pattern") pylab.xlabel("LST [hours]") pylab.ylabel("Temp. [K]") pylab.grid(2) pylab.draw() pylab.show() outputFile = "driftcurve_%s_%s_%.2f.txt" % (nam, args.pol, args.frequency/1e6) print("Writing driftcurve to file '%s'" % outputFile) mf = file(outputFile, "w") for lst,pow in zip(lstList, powListAnt): mf.write("%f %f\n" % (lst, pow)) mf.close()
def main(args): # Beam beamFilename = args.filename beamDict = numpy.load(beamFilename) beam = beamDict['beam'] beam /= beam.max() # Station, polarization, frequency, and beam simulation resolution name = beamDict['station'].item() pol = beamDict['pol'].item() freq = beamDict['freq'].item() try: res = beamDict['res'].item() except KeyError: res = 1.0 ires = 1.0 / (min([1.0, res])) # Get the site information if name == 'lwa1': sta = stations.lwa1 elif name == 'lwasv': sta = stations.lwasv else: raise RuntimeError("Unknown site: %s" % name) # Read in the skymap (GSM or LF map @ 74 MHz) if not args.lfsm: smap = skymap.SkyMapGSM(freq_MHz=freq/1e6) if args.verbose: print("Read in GSM map at %.2f MHz of %s pixels; min=%f, max=%f" % (freq/1e6, len(smap.ra), smap._power.min(), smap._power.max())) else: smap = skymap.SkyMapLFSM(freq_MHz=freq/1e6) if args.verbose: print("Read in LFSM map at %.2f MHz of %s pixels; min=%f, max=%f" % (freq/1e6, len(smap.ra), smap._power.min(), smap._power.max())) def BeamPattern(az, alt, beam=beam, ires=ires): iAz = (numpy.round(az*ires)).astype(numpy.int32) iAlt = (numpy.round(alt*ires)).astype(numpy.int32) return beam[iAz,iAlt] if args.do_plot: az = numpy.arange(0,360*ires+1,1) / float(ires) alt = numpy.arange(0,90*ires+1,1) / float(ires) alt, az = numpy.meshgrid(alt, az) pylab.figure(1) pylab.title("Beam Response: %s pol. @ %0.2f MHz" % (pol, freq/1e6)) pylab.imshow(BeamPattern(az, alt), interpolation='nearest', extent=(0,359, 0,89), origin='lower') pylab.xlabel("Azimuth [deg]") pylab.ylabel("Altitude [deg]") pylab.grid(1) pylab.draw() # Calculate times in both site LST and UTC t0 = astro.get_julian_from_sys() lst = astro.get_local_sidereal_time(sta.long*180.0/math.pi, t0) / 24.0 t0 -= lst*(23.933/24.0) # Compensate for shorter sidereal days times = numpy.arange(0.0, 1.0, args.time_step/1440.0) + t0 lstList = [] powListAnt = [] for t in times: # Project skymap to site location and observation time pmap = skymap.ProjectedSkyMap(smap, sta.lat*180.0/math.pi, sta.long*180.0/math.pi, t) lst = astro.get_local_sidereal_time(sta.long*180.0/math.pi, t) lstList.append(lst) # Convolution of user antenna pattern with visible skymap gain = BeamPattern(pmap.visibleAz, pmap.visibleAlt) powerAnt = (pmap.visiblePower * gain).sum() / gain.sum() powListAnt.append(powerAnt) if args.verbose: lstH = int(lst) lstM = int((lst - lstH)*60.0) lstS = ((lst - lstH)*60.0 - lstM)*60.0 sys.stdout.write("LST: %02i:%02i:%04.1f, Power_ant: %.1f K \r" % (lstH, lstM, lstS, powerAnt)) sys.stdout.flush() sys.stdout.write("\n") # Plot results if args.do_plot: pylab.figure(2) pylab.title("Driftcurve: %s pol. @ %0.2f MHz - %s" % \ (pol, freq/1e6, name.upper())) pylab.plot(lstList, powListAnt, "ro",label="Antenna Pattern") pylab.xlabel("LST [hours]") pylab.ylabel("Temp. [K]") pylab.grid(2) pylab.draw() pylab.show() outputFile = "driftcurve_%s_%s_%.2f.txt" % (name, pol, freq/1e6) print("Writing driftcurve to file '%s'" % outputFile) mf = open(outputFile, "w") for lst,pow in zip(lstList, powListAnt): mf.write("%f %f\n" % (lst,pow)) mf.close()
def test_ProjectedSkyMap_get_direction_cosines_LFSM(self): """Test skymap.ProjectedSkyMap.get_direction_cosines() method using SkyMapLFSM.""" s = skymap.SkyMapLFSM() p = skymap.ProjectedSkyMap(s, 20, 30, astro.get_julian_from_sys()) p.get_direction_cosines()
def test_ProjectedSkyMap_compute_visible_power_LFSM(self): """Test skymap.ProjectedSkyMap.compute_visible_power() method using SkyMapLFSM.""" s = skymap.SkyMapLFSM() p = skymap.ProjectedSkyMap(s, 20, 30, astro.get_julian_from_sys()) p.compute_visible_power()
def test_ProjectedSkyMap_init_LFSM(self): """Test skymap.ProjectedSkyMap constructor method using SkyMapLFSM.""" s = skymap.SkyMapLFSM() skymap.ProjectedSkyMap(s, 20, 30, astro.get_julian_from_sys())
def test_SkyMapLFSM_compute_total_power(self): """Test skymap.SkyMapLFSM.compute_total_power() method.""" s = skymap.SkyMapLFSM() s.compute_total_power()
def test_SkyMapLFSM_init(self): """Test skymap.SkyMapLFSM class constructor method.""" skymap.SkyMapLFSM()