Пример #1
0
 def testObjective(self):
     eps = 1E-6
     psfModel = ms.FitPsfModel(ms.FitPsfControl(), 1.0,
                               numpy.array([0.1, -0.05, 1.0]))
     obj = ms.FitProfileAlgorithm.makeObjective(self.ctrl, psfModel,
                                                self.inputs)
     resolved = geom.ellipses.Quadrupole(15.0, 12.0, 0.23)
     circle = geom.ellipses.Quadrupole(1.0, 1.0, 0.0)
     deltafn = geom.ellipses.Quadrupole(0.0, 0.0, 0.0)
     for q in (resolved, circle, deltafn):
         e = ms.MultiGaussianObjective.EllipseCore(q)
         ms.MultiGaussianObjective.constrainEllipse(e, self.ctrl.minRadius,
                                                    self.ctrl.minAxisRatio)
         parameters = numpy.zeros(3, dtype=float)
         ms.MultiGaussianObjective.writeParameters(e, parameters)
         f0 = numpy.zeros(self.inputs.getSize(), dtype=float)
         obj.computeFunction(parameters, f0)
         d0 = numpy.zeros((parameters.size, self.inputs.getSize()),
                          dtype=float).transpose()
         d1 = numpy.zeros((parameters.size, self.inputs.getSize()),
                          dtype=float).transpose()
         obj.computeDerivative(parameters, f0, d0)
         for i in range(parameters.size):
             parameters[i] += eps
             f1a = numpy.zeros(self.inputs.getSize(), dtype=float)
             obj.computeFunction(parameters, f1a)
             parameters[i] -= 2.0 * eps
             f1b = numpy.zeros(self.inputs.getSize(), dtype=float)
             obj.computeFunction(parameters, f1b)
             parameters[i] -= eps
             d1[:, i] = (f1a - f1b) / (2.0 * eps)
         self.assertClose(d0, d1, atol=1E-4, rtol=1E-10)
         print d0
Пример #2
0
 def testConvolvedModel(self):
     psfModel = ms.FitPsfModel(ms.FitPsfControl(), 1.0,
                               numpy.array([0.1, -0.05, 1.0]))
     psfMultiGaussian = psfModel.getMultiGaussian()
     multiGaussian = ms.MultiGaussianRegistry.lookup(self.ctrl.profile)
     parameters = numpy.array([[0.0, 0.0, 0.0], [0.0, 0.0, -16],
                               [0.2, -0.8, 2.3]])
     sImage = lsst.afw.image.ImageD(self.bbox)
     builders = []
     for p in psfMultiGaussian:
         psfEllipse = psfModel.ellipse.clone()
         psfEllipse.scale(p.radius)
         builders.extend(
             ms.GaussianModelBuilder(self.x, self.y, c.flux, c.radius,
                                     psfEllipse, p.flux)
             for c in multiGaussian)
     psfShapelets = psfModel.asMultiShapelet()
     for row in parameters:
         model = ms.FitProfileModel(self.ctrl, 1.0, row)
         msf = model.asMultiShapelet(self.center).convolve(psfShapelets)
         z0 = sImage.getArray()
         z0[:, :] = 0.0
         msf.evaluate().addToImage(sImage)
         z1 = numpy.zeros(z0.shape, dtype=float)
         for b in builders:
             b.update(ms.MultiGaussianObjective.readParameters(row))
             z1 += b.getModel().reshape(*z1.shape)
         self.assertClose(z0, z1)
         self.assert_(numpy.isfinite(z0).all())
         self.assert_(numpy.isfinite(z1).all())
Пример #3
0
 def testObjective(self):
     eps = 1E-6
     ctrl = ms.FitPsfControl()
     image = lsst.afw.image.ImageD(5, 5)
     nParameters = 3
     nData = image.getBBox().getArea()
     nTests = 10
     center = geom.Point2D(2.0, 2.0)
     xGrid, yGrid = numpy.meshgrid(numpy.arange(-2, 3), numpy.arange(-2, 3))
     image.getArray()[:, :] = 1.0 * numpy.exp(-0.5 * (xGrid**2 + yGrid**2))
     image.getArray()[:, :] += numpy.random.randn(5, 5) * 0.1
     inputs = ms.ModelInputHandler(image, center,
                                   image.getBBox(lsst.afw.image.PARENT))
     obj = ms.FitPsfAlgorithm.makeObjective(ctrl, inputs)
     parameters = numpy.random.rand(nTests, nParameters) * 0.5
     for i in range(nTests):
         f0 = numpy.zeros(nData, dtype=float)
         obj.computeFunction(parameters[i, :], f0)
         f1 = obj.getModel() * obj.getAmplitude() - inputs.getData()
         model = ms.FitPsfModel(ctrl, obj.getAmplitude(), parameters[i, :])
         self.assertClose(
             model.outer[0],
             ctrl.peakRatio * model.inner[0] * ctrl.radiusRatio**2)
         self.assertEqual(model.radiusRatio, ctrl.radiusRatio)
         image2 = lsst.afw.image.ImageD(5, 5)
         multiShapeletFunc = model.asMultiShapelet(center)
         multiShapeletFunc.evaluate().addToImage(image2)
         f2 = (image2.getArray().ravel() - inputs.getData())
         multiGaussian = model.getMultiGaussian()
         builder1 = ms.GaussianModelBuilder(inputs.getX(), inputs.getY(),
                                            multiGaussian[0].flux,
                                            multiGaussian[0].radius)
         builder2 = ms.GaussianModelBuilder(inputs.getX(), inputs.getY(),
                                            multiGaussian[1].flux,
                                            multiGaussian[1].radius)
         builder1.update(model.ellipse)
         builder2.update(model.ellipse)
         f3 = builder1.getModel() + builder2.getModel() - inputs.getData()
         self.assertClose(f0, f1)
         self.assertClose(f0, f2)
         self.assertClose(f0, f3)
         d0 = numpy.zeros((nParameters, nData), dtype=float).transpose()
         d1 = numpy.zeros((nParameters, nData), dtype=float).transpose()
         obj.computeDerivative(parameters[i, :], f0, d0)
         for j in range(nParameters):
             parameters[i, j] += eps
             f1a = numpy.zeros(nData, dtype=float)
             obj.computeFunction(parameters[i, :], f1a)
             parameters[i, j] -= 2.0 * eps
             f1b = numpy.zeros(nData, dtype=float)
             obj.computeFunction(parameters[i, :], f1b)
             d1[:, j] = (f1a - f1b) / (2.0 * eps)
             parameters[i, j] += eps
         self.assertClose(d0, d1, rtol=1E-10, atol=1E-8)
 def __init__(self, source, exposure, name="exp", psfCtrl=None, ctrl=None):
     if ctrl is None:
         if name == "exp":
             config = ms.FitExponentialConfig()
         else:
             config = ms.FitDeVaucouleurConfig()
         ctrl = config.makeControl()
     if psfCtrl is None:
         psfCtrl = ms.FitPsfControl()
     self.ctrl = ctrl
     self.ctrl.name = "multishapelet." + name
     self.psfModel = ms.FitPsfModel(psfCtrl, source)
     self.saved = self.Model(self.ctrl, source)
     self.center = source.getCentroid()
     self.shape = source.getShape()
     self.inputs = self.Algorithm.adjustInputs(self.ctrl, self.psfModel,
                                               self.shape,
                                               source.getFootprint(),
                                               exposure, self.center)
     self.footprint = self.inputs.getFootprint()
     self.bbox = self.footprint.getBBox()
     self.image = lsst.afw.image.ImageD(self.bbox)
     self.image.getArray()[:, :] = exposure.getMaskedImage().getImage(
     ).getArray()[self.bbox.getSlices()]
     initialEllipse = ms.MultiGaussianObjective.EllipseCore(self.shape)
     opt = self.Algorithm.makeOptimizer(self.ctrl, self.psfModel,
                                        initialEllipse, self.inputs)
     maxIter = opt.getControl().maxIter
     self.iterations = [self.Iteration(opt, self)]
     for self.iterCount in range(maxIter):
         opt.step()
         self.iterations.append(self.Iteration(opt, self))
         if opt.getState() & ms.HybridOptimizer.FINISHED:
             break
     self.model = self.Model(self.iterations[-1].model)
     self.Algorithm.fitShapeletTerms(self.ctrl, self.psfModel, self.inputs,
                                     self.model)