Пример #1
0
def run(display=False):
    #
    # Create the tasks
    #
    charImageConfig = CharacterizeImageTask.ConfigClass()
    charImageTask = CharacterizeImageTask(config=charImageConfig)

    config = CalibrateTask.ConfigClass()
    config.astrometry.retarget(MyAstrometryTask)
    calibrateTask = CalibrateTask(config=config)

    # load the data
    # Exposure ID and the number of bits required for exposure IDs are usually obtained from a data repo,
    # but here we pick reasonable values (there are 64 bits to share between exposure IDs and source IDs).
    exposure = loadData()
    exposureIdInfo = ExposureIdInfo(expId=1, expBits=5)

    # characterize the exposure to repair cosmic rays and fit a PSF model
    # display now because CalibrateTask modifies the exposure in place
    charRes = charImageTask.characterize(exposure=exposure, exposureIdInfo=exposureIdInfo)
    if display:
        displayFunc(charRes.exposure, charRes.sourceCat, frame=1)

    # calibrate the exposure
    calRes = calibrateTask.calibrate(exposure=charRes.exposure, exposureIdInfo=exposureIdInfo)
    if display:
        displayFunc(calRes.exposure, calRes.sourceCat, frame=2)
Пример #2
0
def run(display=False):
    #
    # Create the task using a butler constructed using the obs_test repo
    #
    butler = dafPersistence.Butler(os.path.join(lsst.utils.getPackageDir("obs_test"), "data", "input"))
    charImageConfig = CharacterizeImageTask.ConfigClass()
    charImageTask = CharacterizeImageTask(butler, config=charImageConfig)

    config = CalibrateTask.ConfigClass()
    config.astrometry.retarget(MyAstrometryTask)
    calibrateTask = CalibrateTask(butler, config=config)

    # load the data
    # Exposure ID and the number of bits required for exposure IDs are usually obtained from a data repo,
    # but here we pick reasonable values (there are 64 bits to share between exposure IDs and source IDs).
    exposure = loadData()
    exposureIdInfo = ExposureIdInfo(expId=1, expBits=5)

    # characterize the exposure to repair cosmic rays and fit a PSF model
    # display now because CalibrateTask modifies the exposure in place
    charRes = charImageTask.characterize(exposure=exposure, exposureIdInfo=exposureIdInfo)
    if display:
        displayFunc(charRes.exposure, charRes.sourceCat, frame=1)

    # calibrate the exposure
    calRes = calibrateTask.calibrate(exposure=charRes.exposure, exposureIdInfo=exposureIdInfo)
    if display:
        displayFunc(calRes.exposure, calRes.sourceCat, frame=2)
Пример #3
0
def run(display=False):
    #
    # Create the tasks
    #
    charImageConfig = CharacterizeImageTask.ConfigClass()
    charImageTask = CharacterizeImageTask(config=charImageConfig)

    config = CalibrateTask.ConfigClass()
    config.astrometry.retarget(MyAstrometryTask)
    calibrateTask = CalibrateTask(config=config)

    # load the data
    # Exposure ID and the number of bits required for exposure IDs are usually obtained from a data repo,
    # but here we pick reasonable values (there are 64 bits to share between exposure IDs and source IDs).
    exposure = loadData()
    exposureIdInfo = ExposureIdInfo(expId=1, expBits=5)

    # characterize the exposure to repair cosmic rays and fit a PSF model
    # display now because CalibrateTask modifies the exposure in place
    charRes = charImageTask.characterize(exposure=exposure,
                                         exposureIdInfo=exposureIdInfo)
    if display:
        displayFunc(charRes.exposure, charRes.sourceCat, frame=1)

    # calibrate the exposure
    calRes = calibrateTask.calibrate(exposure=charRes.exposure,
                                     exposureIdInfo=exposureIdInfo)
    if display:
        displayFunc(calRes.exposure, calRes.sourceCat, frame=2)
Пример #4
0
def processCCDs(image):
    from lsst.pipe.tasks.calibrate import CalibrateTask, CalibrateConfig
    from lsst.pipe.tasks.characterizeImage import CharacterizeImageTask

    calibRes = None
    # init tasks
    charImage = CharacterizeImageTask()
    calibrateConfig = CalibrateConfig(doPhotoCal=False,
                                      doAstrometry=False,
                                      doDeblend=False)
    calibrateTask = CalibrateTask(config=calibrateConfig)

    try:
        # characterize image
        charRes = charImage.characterize(image,
                                         exposureIdInfo=None,
                                         background=None)
        # calibrate image
        calibRes = calibrateTask.calibrate(charRes.exposure,
                                           exposureIdInfo=None,
                                           background=charRes.background,
                                           icSourceCat=None)
    except Exception as e:
        print "failed to calibrate the image"
        print str(e)

    return calibRes
Пример #5
0
    def setUp(self):
        # Load sample input from disk
        expPath = os.path.join(getPackageDir("pipe_tasks"), "tests", "data",
                               "v695833-e0-c000-a00.sci.fits")
        self.exposure = afwImage.ExposureF(expPath)

        # Characterize the image (create PSF, etc.)
        charImConfig = CharacterizeImageConfig()
        charImTask = CharacterizeImageTask(config=charImConfig)
        self.charImResults = charImTask.run(self.exposure)

        # set log level so that warnings do not display
        Log.getLogger("calibrate").setLevel(Log.ERROR)
Пример #6
0
 def run(self, sensor_id, infile, gains, bias_frame=None):
     #
     # Process a CCD image mosaic
     #
     if self.config.verbose:
         self.log.info("processing {0}".format(infile))
     image = make_ccd_mosaic(infile, bias_frame=bias_frame, gains=gains)
     exposure = afwImage.ExposureF(image.getBBox())
     exposure.setImage(image)
     #
     # Set up characterize task configuration
     #
     nsig = self.config.nsig
     bgbinsize = self.config.bgbinsize
     minpixels = self.config.minpixels
     charConfig = CharacterizeImageConfig()
     charConfig.doMeasurePsf = False
     charConfig.doApCorr = False
     charConfig.repair.doCosmicRay = False
     charConfig.detection.minPixels = minpixels
     charConfig.detection.background.binSize = bgbinsize
     charConfig.detection.thresholdType = "stdev"
     charConfig.detection.thresholdValue = nsig
     hsm_plugins = set(["ext_shapeHSM_HsmShapeBj",
                        "ext_shapeHSM_HsmShapeLinear",
                        "ext_shapeHSM_HsmShapeKsb",
                        "ext_shapeHSM_HsmShapeRegauss",
                        "ext_shapeHSM_HsmSourceMoments",
                        "ext_shapeHSM_HsmPsfMoments"])  
     charConfig.measurement.plugins.names |= hsm_plugins
     charTask = CharacterizeImageTask(config=charConfig)
     if lsst.pipe.tasks.__version__.startswith('17.0'):
         result = charTask.run(exposure)
     else:
         result = charTask.characterize(exposure)
     src = result.sourceCat
     if self.config.verbose:
         self.log.info("Detected {0} objects".format(len(src)))
     #
     # Save catalog results to file
     #
     output_dir = self.config.output_dir
     if self.config.output_file is None:
         output_file = os.path.join(output_dir,
                                    '{0}_source_catalog.cat'.format(sensor_id))
     else:
         output_file = os.path.join(output_dir, self.config.output_file)
     if self.config.verbose:
         self.log.info("Writing spot results file to {0}".format(output_file))
     src.writeFits(output_file)
Пример #7
0
 def testFlags(self):
     # Test that all of the flags are defined and there is no reservation by default
     # also test that used sources are a subset of candidate sources
     task = CharacterizeImageTask()
     results = task.characterize(self.exposure)
     used = 0
     reserved = 0
     for source in results.sourceCat:
         if source.get("calib_psfUsed"):
             used += 1
             self.assertTrue(source.get("calib_psfCandidate"))
         if source.get("calib_psf_reserved"):
             reserved += 1
     self.assertGreater(used, 0)
     self.assertEqual(reserved, 0)
Пример #8
0
 def testFlags(self):
     # Test that all of the flags are defined and there is no reservation by default
     # also test that used sources are a subset of candidate sources
     config = CharacterizeImageConfig()
     config.measurePsf.psfDeterminer = 'piff'
     config.measurePsf.psfDeterminer['piff'].spatialOrder = 0
     task = CharacterizeImageTask(config=config)
     results = task.run(self.exposure)
     used = 0
     reserved = 0
     for source in results.sourceCat:
         if source.get("calib_psf_used"):
             used += 1
             self.assertTrue(source.get("calib_psf_candidate"))
         if source.get("calib_psf_reserved"):
             reserved += 1
     self.assertGreater(used, 0)
     self.assertEqual(reserved, 0)
Пример #9
0
    def execute(self, dataRef):
        """!Characterize a science image

        @param dataRef: butler data reference
        @return a pipeBase Struct containing the results
        """
        self.log.info("Performing Super CharacterizeImage on sensor data ID %s" % (dataRef.dataId,))

        self.log.info("Reading input data using dataRef")
        inputData = self.read_input_data(dataRef)

        self.log.info("Running operations. The run() method should not take anything Butler")
        result = CharacterizeImageTask.characterize(CharacterizeImageTask(config=self.config, log=self.log, schema=SourceTable.makeMinimalSchema()),
                                                    **inputData.getDict())

        self.log.info("Writing output data using dataRef")
        self.write_output_data(dataRef, result)

        return result
Пример #10
0
 def testIsPrimaryFlag(self):
     """Tests detect_isPrimary column gets added when run, and that sources
     labelled as detect_isPrimary are not sky sources and have no children.
     """
     charImConfig = CharacterizeImageConfig()
     charImTask = CharacterizeImageTask(config=charImConfig)
     charImResults = charImTask.run(self.exposure)
     calibConfig = CalibrateConfig()
     calibConfig.doAstrometry = False
     calibConfig.doPhotoCal = False
     calibTask = CalibrateTask(config=calibConfig)
     calibResults = calibTask.run(charImResults.exposure)
     outputCat = calibResults.outputCat
     self.assertTrue("detect_isPrimary" in outputCat.schema.getNames())
     # make sure all sky sources are flagged as not primary
     self.assertEqual(
         sum((outputCat["detect_isPrimary"]) & (outputCat["sky_source"])),
         0)
     # make sure all parent sources are flagged as not primary
     self.assertEqual(
         sum((outputCat["detect_isPrimary"])
             & (outputCat["deblend_nChild"] > 0)), 0)
Пример #11
0
    def _checkSkySourceColumnExistence(self, doSkySources):
        """Implements sky_source column checking.

        Parameters
        ----------
        doSkySource : `bool`
            Value of the config flag determining whether to insert sky sources.
        """
        charImConfig = CharacterizeImageConfig()
        charImConfig.measurePsf.psfDeterminer = 'piff'
        charImConfig.measurePsf.psfDeterminer['piff'].spatialOrder = 0
        charImTask = CharacterizeImageTask(config=charImConfig)
        charImResults = charImTask.run(self.exposure)
        calibConfig = CalibrateConfig()
        calibConfig.doAstrometry = False
        calibConfig.doPhotoCal = False
        calibConfig.doSkySources = doSkySources
        calibTask = CalibrateTask(config=calibConfig)
        calibResults = calibTask.run(charImResults.exposure)
        if doSkySources:
            self.assertTrue('sky_source' in calibResults.outputCat.schema.getNames())
        else:
            self.assertFalse('sky_source' in calibResults.outputCat.schema.getNames())
Пример #12
0
    def testComponents(self):
        """Test that we can run the first-level subtasks of ProcessCcdTasks.

        This tests that we can run these subtasks from the command-line independently (they're all
        CmdLineTasks) as well as directly from Python (without giving them access to a Butler).

        Aside from verifying that no exceptions are raised, we simply tests that most persisted results are
        present and equivalent to both in-memory results.
        """
        outPath = tempfile.mkdtemp(
        ) if OutputName is None else "{}-Components".format(OutputName)
        # We'll use an input butler to get data for the tasks we call from Python, but we won't ever give it
        # to those tasks.
        inputButler = lsst.daf.persistence.Butler(InputDir)
        # Construct task instances we can use directly from Python
        isrTask = IsrTask(config=getObsTestConfig(IsrTask), name="isr2")
        # If we ever enable astrometry and photocal in obs_test, we'll need to pass a refObjLoader to these
        # tasks.  To maintain the spirit of these tests, we'd ideally have a LoadReferenceObjectsTask class
        # that doesn't require a Butler.  If we don't, we should construct a butler-based on outside these
        # task constructors and pass the LoadReferenceObjectsTask instance to the task constructors.
        charImageTask = CharacterizeImageTask(
            config=getObsTestConfig(CharacterizeImageTask), name="charImage2")
        calibrateTask = CalibrateTask(config=getObsTestConfig(CalibrateTask),
                                      name="calibrate2",
                                      icSourceSchema=charImageTask.schema)
        try:
            dataId = dict(visit=1)
            dataIdStrList = [
                "%s=%s" % (key, val) for key, val in dataId.items()
            ]

            isrResult1 = IsrTask.parseAndRun(
                args=[
                    InputDir, "--output", outPath, "--clobber-config",
                    "--doraise", "--id"
                ] + dataIdStrList,
                doReturnResults=True,
            )
            # We'll just use the butler to get the original image and calibration frames; it's not clear
            # extending the test coverage to include that is worth it.
            dataRef = inputButler.dataRef("raw", dataId=dataId)
            rawExposure = dataRef.get("raw", immediate=True)
            camera = dataRef.get("camera")
            isrData = isrTask.readIsrData(dataRef, rawExposure)
            exposureIdInfo = inputButler.get("expIdInfo", dataId=dataId)
            isrResult2 = isrTask.run(
                rawExposure,
                bias=isrData.bias,
                linearizer=isrData.linearizer,
                flat=isrData.flat,
                defects=isrData.defects,
                fringes=isrData.fringes,
                bfKernel=isrData.bfKernel,
                camera=camera,
            )
            self.assertMaskedImagesEqual(
                isrResult1.parsedCmd.butler.get(
                    "postISRCCD", dataId, immediate=True).getMaskedImage(),
                isrResult1.resultList[0].result.exposure.getMaskedImage())
            self.assertMaskedImagesEqual(
                isrResult2.exposure.getMaskedImage(),
                isrResult1.resultList[0].result.exposure.getMaskedImage())

            icResult1 = CharacterizeImageTask.parseAndRun(
                args=[
                    InputDir, "--output", outPath, "--clobber-config",
                    "--doraise", "--id"
                ] + dataIdStrList,
                doReturnResults=True,
            )
            icResult2 = charImageTask.run(isrResult2.exposure,
                                          exposureIdInfo=exposureIdInfo)
            self.assertMaskedImagesEqual(
                icResult1.parsedCmd.butler.get(
                    "icExp", dataId, immediate=True).getMaskedImage(),
                icResult1.resultList[0].result.exposure.getMaskedImage())
            self.assertMaskedImagesEqual(
                icResult2.exposure.getMaskedImage(),
                icResult1.resultList[0].result.exposure.getMaskedImage())
            self.assertCatalogsEqual(
                icResult1.parsedCmd.butler.get("icSrc", dataId,
                                               immediate=True),
                icResult1.resultList[0].result.sourceCat)
            self.assertCatalogsEqual(
                icResult2.sourceCat,
                icResult1.resultList[0].result.sourceCat,
            )
            self.assertBackgroundListsEqual(
                icResult1.parsedCmd.butler.get("icExpBackground",
                                               dataId,
                                               immediate=True),
                icResult1.resultList[0].result.background)
            self.assertBackgroundListsEqual(
                icResult2.background,
                icResult1.resultList[0].result.background)

            calResult1 = CalibrateTask.parseAndRun(
                args=[
                    InputDir, "--output", outPath, "--clobber-config",
                    "--doraise", "--id"
                ] + dataIdStrList,
                doReturnResults=True,
            )
            calResult2 = calibrateTask.run(
                icResult2.exposure,
                background=icResult2.background,
                icSourceCat=icResult2.sourceCat,
                exposureIdInfo=exposureIdInfo,
            )
            self.assertMaskedImagesEqual(
                calResult1.parsedCmd.butler.get(
                    "calexp", dataId, immediate=True).getMaskedImage(),
                calResult1.resultList[0].result.exposure.getMaskedImage())
            self.assertMaskedImagesEqual(
                calResult2.exposure.getMaskedImage(),
                calResult1.resultList[0].result.exposure.getMaskedImage())
            self.assertCatalogsEqual(
                calResult1.parsedCmd.butler.get("src", dataId, immediate=True),
                calResult1.resultList[0].result.sourceCat)
            self.assertCatalogsEqual(calResult2.sourceCat,
                                     calResult1.resultList[0].result.sourceCat,
                                     skipCols=("id", "parent"))
            self.assertBackgroundListsEqual(
                calResult1.parsedCmd.butler.get("calexpBackground",
                                                dataId,
                                                immediate=True),
                calResult1.resultList[0].result.background)
            self.assertBackgroundListsEqual(
                calResult2.background,
                calResult1.resultList[0].result.background)

        finally:
            if OutputName is None:
                shutil.rmtree(outPath)
            else:
                print("testProcessCcd.py's output data saved to %r" %
                      (OutputName, ))
Пример #13
0
#!/usr/bin/env python
#
# LSST Data Management System
# Copyright 2016 LSST/AURA
#
# This product includes software developed by the
# LSST Project (http://www.lsst.org/).
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.    See the
# GNU General Public License for more details.
#
# You should have received a copy of the LSST License Statement and
# the GNU General Public License along with this program.  If not,
# see <http://www.lsstcorp.org/LegalNotices/>.
#
from lsst.pipe.tasks.characterizeImage import CharacterizeImageTask

CharacterizeImageTask.parseAndRun()
Пример #14
0
def run(config, inputFiles, weightFiles=None, varianceFiles=None,
        returnCalibSources=False, displayResults=[], verbose=False):
    #
    # Create the tasks
    #
    schema = afwTable.SourceTable.makeMinimalSchema()
    algMetadata = dafBase.PropertyList()

    isrTask = IsrTask(config=config.isr)
    charImageTask =         CharacterizeImageTask(None, config=config.charImage)
    sourceDetectionTask =   SourceDetectionTask(config=config.detection, schema=schema)
    if config.doDeblend:
        if SourceDeblendTask:
            sourceDeblendTask = SourceDeblendTask(config=config.deblend, schema=schema)
        else:
            print >> sys.stderr, "Failed to import lsst.meas.deblender;  setting doDeblend = False"
            config.doDeblend = False
    sourceMeasurementTask = SingleFrameMeasurementTask(schema=schema, config=config.measurement,
                                                       algMetadata=algMetadata)

    keysToCopy = []
    for key in [charImageTask.measurePsf.reservedKey,
                charImageTask.measurePsf.usedKey,]:
        keysToCopy.append((schema.addField(charImageTask.schema.find(key).field), key))

    exposureDict = {}; calibSourcesDict = {}; sourcesDict = {}
    
    for inputFile, weightFile, varianceFile in zip(inputFiles, weightFiles, varianceFiles):
        #
        # Create the output table
        #
        tab = afwTable.SourceTable.make(schema)
        #
        # read the data
        #
        if verbose:
            print "Reading %s" % inputFile
            
        exposure = makeExposure(inputFile, weightFile, varianceFile,
                                config.badPixelValue, config.variance)
        #
        if config.interpPlanes:
            import lsst.ip.isr as ipIsr
            defects = ipIsr.getDefectListFromMask(exposure.getMaskedImage(), config.interpPlanes,
                                                  growFootprints=0)

            isrTask.run(exposure, defects=defects)
        #
        # process the data
        #
        if config.doCalibrate:
            result = charImageTask.characterize(exposure)
            exposure, calibSources = result.exposure, result.sourceCat
        else:
            calibSources = None
            if not exposure.getPsf():
                charImageTask.installSimplePsf.run(exposure)

        exposureDict[inputFile] = exposure
        calibSourcesDict[inputFile] = calibSources if returnCalibSources else None

        result = sourceDetectionTask.run(tab, exposure)
        sources = result.sources
        sourcesDict[inputFile] = sources

        if config.doDeblend:
            sourceDeblendTask.run(exposure, sources)

        sourceMeasurementTask.measure(exposure, sources)

        if verbose:
            print "Detected %d objects" % len(sources)

        propagatePsfFlags(keysToCopy, calibSources, sources)
        
        if displayResults:              # display results of processing (see also --debug argparse option)
            showApertures = "showApertures".upper() in displayResults
            showPSFs = "showPSFs".upper() in displayResults
            showShapes = "showShapes".upper() in displayResults

            display = afwDisplay.getDisplay(frame=1)

            if algMetadata.exists("base_CircularApertureFlux_radii"):
                radii = algMetadata.get("base_CircularApertureFlux_radii")
            else:
                radii = []

            display.mtv(exposure, title=os.path.split(inputFile)[1])

            with display.Buffering():
                for s in sources:
                    xy = s.getCentroid()
                    display.dot('+', *xy,
                                ctype=afwDisplay.CYAN if s.get("flags_negative") else afwDisplay.GREEN)

                    if showPSFs and (s.get("calib_psfUsed") or s.get("calib_psfReserved")):
                        display.dot('o', *xy, size=10,
                                    ctype=afwDisplay.GREEN if s.get("calib_psfUsed") else afwDisplay.YELLOW)

                    if showShapes:
                        display.dot(s.getShape(), *xy, ctype=afwDisplay.RED)

                    if showApertures:
                        for radius in radii:
                            display.dot('o', *xy, size=radius, ctype=afwDisplay.YELLOW)

    return exposureDict, calibSourcesDict, sourcesDict
Пример #15
0
########################################
####### Setup LSST begins
########################################
visit=289697
ccdnum = 1
HOME_PATH = os.path.expanduser("~")
butler = dafPersist.Butler(HOME_PATH + '/lsst_data/raw')
exposure = butler.get("instcal", visit=visit, ccdnum=ccdnum, filter='g', immediate=True)
mask  = exposure.getMaskedImage().getMask().getArray() #TODO: move this matrix to SciDB
variance = exposure.getMaskedImage().getVariance().getArray() #TODO: move this matrix to SciDB
butler = dafPersist.Butler(HOME_PATH + '/lsst_data/raw')
filename = HOME_PATH + "/lsst_data/raw/crblasted0289697/instcal0289697.1.fits"
fitsHeader = afwImage.readMetadata(filename)
wcs = afwImage.makeWcs(fitsHeader)
charImage = CharacterizeImageTask()
calibrateConfig = CalibrateConfig(doPhotoCal=False, doAstrometry=False)
calibrateTask = CalibrateTask(config=calibrateConfig)
newSkyMapConfig = skymap.discreteSkyMap.DiscreteSkyMapConfig(projection='STG',
                                                             decList=[-4.9325280994132905],
                                                             patchInnerDimensions=[2000, 2000],
                                                             radiusList=[4.488775723429071],
                                                             pixelScale=0.333, rotation=0.0, patchBorder=100,
                                                             raList=[154.10660740464786], tractOverlap=0.0)

hits_skymap = skymap.discreteSkyMap.DiscreteSkyMap(config=newSkyMapConfig)
tract = hits_skymap[0]
sys.stderr.write("=====> DFZ 3/24/2017: mask.shape = " + str(mask.shape) + "\n")
########################################
####### Setup LSST ends
########################################
                if spots_bbox.overlaps(amp.getBBox()):
                    gain = gain_data[amp.getName()]
                    img = exposure_copy.image
                    sim = img.Factory(img, amp.getBBox())
                    sim *= gain
                    print(amp.getName(), gain, amp.getBBox())
                    sys.stdout.flush()                    
                    if do_bf_corr:
                        brighterFatterCorrection(exposure_copy[amp.getBBox()],bf_kernel.kernel[amp.getName()],20,10,False)
                else:
                    continue
            # Now trim the exposure down to the region of interest
            trimmed_exposure = exposure_copy[spots_bbox]

            # Now find and characterize the spots
            charTask = CharacterizeImageTask(config=charConfig)
            tstart=time.time()
            charResult = charTask.run(trimmed_exposure)
            spotCatalog = charResult.sourceCat
            print("%s, Correction = %r, Characterization took "%(amp.getName(),do_bf_corr),str(time.time()-tstart)[:4]," seconds")
            sys.stdout.flush()                                
            # Now trim out spots not between minSize and maxSize
            select = ((spotCatalog['base_SdssShape_xx'] >= minSize) & (spotCatalog['base_SdssShape_xx'] <= maxSize) & 
              (spotCatalog['base_SdssShape_yy'] >= minSize) & (spotCatalog['base_SdssShape_yy'] <= maxSize))
            spotCatalog  = spotCatalog.subset(select)
            x2 = spotCatalog['base_SdssShape_xx']
            y2 = spotCatalog['base_SdssShape_yy']
            flux = spotCatalog['base_SdssShape_instFlux']
            numspots = len(flux)
            print("Detected ",len(spotCatalog)," objects, Flux = %f, X2 = %f, Y2 = %f"%(np.nanmean(flux),np.nanmean(x2),np.nanmean(y2)))
            sys.stdout.flush()                                
Пример #17
0
def run(config,
        inputFiles,
        weightFiles=None,
        varianceFiles=None,
        returnCalibSources=False,
        displayResults=[],
        verbose=False):
    #
    # Create the tasks
    #
    schema = afwTable.SourceTable.makeMinimalSchema()
    algMetadata = dafBase.PropertyList()

    isrTask = IsrTask(config=config.isr)
    charImageTask = CharacterizeImageTask(None, config=config.charImage)
    sourceDetectionTask = SourceDetectionTask(config=config.detection,
                                              schema=schema)
    if config.doDeblend:
        if SourceDeblendTask:
            sourceDeblendTask = SourceDeblendTask(config=config.deblend,
                                                  schema=schema)
        else:
            print >> sys.stderr, "Failed to import lsst.meas.deblender;  setting doDeblend = False"
            config.doDeblend = False
    sourceMeasurementTask = SingleFrameMeasurementTask(
        schema=schema, config=config.measurement, algMetadata=algMetadata)

    keysToCopy = []
    for key in [
            charImageTask.measurePsf.reservedKey,
            charImageTask.measurePsf.usedKey,
    ]:
        keysToCopy.append(
            (schema.addField(charImageTask.schema.find(key).field), key))

    exposureDict = {}
    calibSourcesDict = {}
    sourcesDict = {}

    for inputFile, weightFile, varianceFile in zip(inputFiles, weightFiles,
                                                   varianceFiles):
        #
        # Create the output table
        #
        tab = afwTable.SourceTable.make(schema)
        #
        # read the data
        #
        if verbose:
            print "Reading %s" % inputFile

        exposure = makeExposure(inputFile, weightFile, varianceFile,
                                config.badPixelValue, config.variance)
        #
        if config.interpPlanes:
            import lsst.ip.isr as ipIsr
            defects = ipIsr.getDefectListFromMask(exposure.getMaskedImage(),
                                                  config.interpPlanes,
                                                  growFootprints=0)

            isrTask.run(exposure, defects=defects)
        #
        # process the data
        #
        if config.doCalibrate:
            result = charImageTask.characterize(exposure)
            exposure, calibSources = result.exposure, result.sourceCat
        else:
            calibSources = None
            if not exposure.getPsf():
                charImageTask.installSimplePsf.run(exposure)

        exposureDict[inputFile] = exposure
        calibSourcesDict[
            inputFile] = calibSources if returnCalibSources else None

        result = sourceDetectionTask.run(tab, exposure)
        sources = result.sources
        sourcesDict[inputFile] = sources

        if config.doDeblend:
            sourceDeblendTask.run(exposure, sources)

        sourceMeasurementTask.measure(exposure, sources)

        if verbose:
            print "Detected %d objects" % len(sources)

        propagatePsfFlags(keysToCopy, calibSources, sources)

        if displayResults:  # display results of processing (see also --debug argparse option)
            showApertures = "showApertures".upper() in displayResults
            showPSFs = "showPSFs".upper() in displayResults
            showShapes = "showShapes".upper() in displayResults

            display = afwDisplay.getDisplay(frame=1)

            if algMetadata.exists("base_CircularApertureFlux_radii"):
                radii = algMetadata.get("base_CircularApertureFlux_radii")
            else:
                radii = []

            display.mtv(exposure, title=os.path.split(inputFile)[1])

            with display.Buffering():
                for s in sources:
                    xy = s.getCentroid()
                    display.dot('+',
                                *xy,
                                ctype=afwDisplay.CYAN if
                                s.get("flags_negative") else afwDisplay.GREEN)

                    if showPSFs and (s.get("calib_psfUsed")
                                     or s.get("calib_psfReserved")):
                        display.dot(
                            'o',
                            *xy,
                            size=10,
                            ctype=afwDisplay.GREEN
                            if s.get("calib_psfUsed") else afwDisplay.YELLOW)

                    if showShapes:
                        display.dot(s.getShape(), *xy, ctype=afwDisplay.RED)

                    if showApertures:
                        for radius in radii:
                            display.dot('o',
                                        *xy,
                                        size=radius,
                                        ctype=afwDisplay.YELLOW)

    return exposureDict, calibSourcesDict, sourcesDict
Пример #18
0
def main():
    # try out one exposure
    #visits = ["0288935","0288976"] #,"0289893","0289913","0289931","0289614","0289818","0289820", "0289850","0289851","0289871","0289892", "0288935","0288976","0289016","0289056","0289161","0289202","0289243","0289284","0289368","0289409","0289450","0289493","0289573","0289656"]
    visits = ["0288976", "0288935"]
    ccds = []
    exit(0)
    for i in range(1, 61):
        ccds.append(i)

    filterName = 'g'

    DATA_PATH = "/root/extra_home/lsst_data/"
    #spathprefix = "/home/dongfang/download/lsst_data/"
    spathprefix = DATA_PATH + "raw/"
    #calexpsloc = "/home/dongfang/download/lsst_data/calexps/"
    calexpsloc = DATA_PATH + "calexps/"
    #coaddloc = "/home/dongfang/download/lsst_data/coadds/"
    coaddloc = DATA_PATH + "coadds/"
    #mergecoaddloc = "/home/dongfang/download/lsst_data/merge/"
    mergecoaddloc = DATA_PATH + "merge/"

    # Characterize Image
    charImageConfig = CharacterizeImageConfig()
    charImage = CharacterizeImageTask()

    calibrateConfig = CalibrateConfig(doPhotoCal=False, doAstrometry=False)
    calibrateTask = CalibrateTask(config=calibrateConfig)

    makeCTEConfig = MakeCoaddTempExpConfig()
    makeCTE = MakeCoaddTempExpTask(config=makeCTEConfig)

    newSkyMapConfig = skymap.discreteSkyMap.DiscreteSkyMapConfig(
        projection='STG',
        decList=[-4.9325280994132905],
        patchInnerDimensions=[2000, 2000],
        radiusList=[4.488775723429071],
        pixelScale=0.333,
        rotation=0.0,
        patchBorder=100,
        raList=[154.10660740464786],
        tractOverlap=0.0)

    hits_skymap = skymap.discreteSkyMap.DiscreteSkyMap(config=newSkyMapConfig)
    tract = hits_skymap[0]
    coaddTempDict = {}
    calibResDict = {}
    f = open("log.txt", 'wb')
    start = datetime.datetime.now()
    #process CCDs to create calexps.
    for v in visits:
        for ccd in ccds:
            visit = int(v)
            filename = "instcal" + v + "." + str(ccd) + ".fits"
            calexpfn = calexpsloc + v + "/" + filename
            source = spathprefix + v + "/" + filename
            exposure = afwImg.ExposureF(source)

            try:
                # Characterize Image
                charRes = charImage.characterize(exposure,
                                                 exposureIdInfo=None,
                                                 background=None)
            except:
                f.write("DFZ DEBUG at charRes: errors in visit " + v +
                        ", ccd " + str(ccd) + "\n")

            try:
                # Caliberate Image
                calibRes = calibrateTask.calibrate(
                    charRes.exposure,
                    exposureIdInfo=None,
                    background=charRes.background,
                    icSourceCat=None)
            except:
                f.write("DFZ DEBUG at calibRes: errors in visit " + v +
                        ", ccd " + str(ccd) + "\n")

            try:
                #write out calexps
                calibRes.exposure.writeFits(calexpfn)
                #calbresDict.append((v,ccd),calibRes)
            except:
                f.write("DFZ DEBUG at calibRes.exposure: errors in visit " +
                        v + ", ccd " + str(ccd) + "\n")

    end = datetime.datetime.now()
    d = end - start

    f.write("time for creating calexps: ")
    f.write(str(d.total_seconds()))
    f.write("\n")

    #time for creating co-add tempexps.
    start = datetime.datetime.now()

    # map calexps to patch-ids
    visit = visits[0]
    ccdsPerPatch = []

    for ccd in ccds:
        filename = "instcal" + visit + "." + str(ccd) + ".fits"
        source = calexpsloc + visit + "/" + filename
        exposure = afwImg.ExposureF(source)
        bbox = exposure.getBBox()
        wcs = exposure.getWcs()
        corners = bbox.getCorners()
        xIndexMax, yIndexMax = tract.findPatch(
            wcs.pixelToSky(corners[0][0], corners[0][1])).getIndex()
        xIndexMin, yIndexMin = tract.findPatch(
            wcs.pixelToSky(corners[2][0], corners[2][1])).getIndex()
        yy = range(yIndexMin, yIndexMax + 1)
        xx = range(xIndexMin, xIndexMax + 1)

        for yIdx in yy:
            for xIdx in xx:
                ccdsPerPatch.append((ccd, (xIdx, yIdx)))
        print len(ccdsPerPatch)
    #import cPickle
    #cPickle.dump(open("ccdsinpatch.p",'wb'),ccdsPerPatch)

    # import cPickle
    # f = open("ccdsInPatch.p",'wb')
    # cPickle.dump(ccdsInPatch,f)
    #import cPickle

    #ccdsInPatch = cPickle.load(open("ccdsInPatch.p",'rb'))
    df = pd.DataFrame(ccdsPerPatch)

    dfgby = df.groupby(1)
    makeCTEConfig = MakeCoaddTempExpConfig()
    makeCTE = MakeCoaddTempExpTask(config=makeCTEConfig)
    coaddTempExpDict = {}
    for visit in visits:
        for a in dfgby.indices:
            coaddTempExpDict[a] = {}
            xInd = a[0]
            yInd = a[1]
            skyInfo = getSkyInfo(hits_skymap, xInd, yInd)
            v = int(visit)

            coaddTempExp = afwImage.ExposureF(skyInfo.bbox, skyInfo.wcs)
            coaddTempExp.getMaskedImage().set(
                numpy.nan, afwImage.MaskU.getPlaneBitMask("NO_DATA"),
                numpy.inf)
            totGoodPix = 0
            didSetMetadata = False
            modelPsf = makeCTEConfig.modelPsf.apply(
            ) if makeCTEConfig.doPsfMatch else None
            setInputRecorder = False

            for b in dfgby.get_group(a)[0].ravel():
                print a
                print b
                if not setInputRecorder:
                    ccdsinPatch = len(dfgby.get_group(a)[0].ravel())
                    try:
                        inputRecorder = makeCTE.inputRecorder.makeCoaddTempExpRecorder(
                            v, ccdsinPatch)
                    except:
                        f.write("DFZ DEBUG at inputRecorder\n")
                    setInputRecorder = True
                numGoodPix = 0
                ccd = b
                filename = "instcal" + visit + "." + str(ccd) + ".fits"
                source = calexpsloc + visit + "/" + filename
                calExp = afwImg.ExposureF(source)
                ccdId = calExp.getId()
                warpedCcdExp = makeCTE.warpAndPsfMatch.run(
                    calExp,
                    modelPsf=modelPsf,
                    wcs=skyInfo.wcs,
                    maxBBox=skyInfo.bbox).exposure
                if didSetMetadata:
                    mimg = calExp.getMaskedImage()
                    mimg *= (coaddTempExp.getCalib().getFluxMag0()[0] /
                             calExp.getCalib().getFluxMag0()[0])
                    del mimg

                numGoodPix = coaddUtils.copyGoodPixels(
                    coaddTempExp.getMaskedImage(),
                    warpedCcdExp.getMaskedImage(), makeCTE.getBadPixelMask())
                totGoodPix += numGoodPix
                if numGoodPix > 0 and not didSetMetadata:
                    coaddTempExp.setCalib(warpedCcdExp.getCalib())
                    coaddTempExp.setFilter(warpedCcdExp.getFilter())
                    didSetMetadata = True

                inputRecorder.addCalExp(calExp, ccdId, numGoodPix)

        ##### End loop over ccds here:
            inputRecorder.finish(coaddTempExp, totGoodPix)
            if totGoodPix > 0 and didSetMetadata:
                coaddTempExp.setPsf(
                    modelPsf if makeCTEConfig.doPsfMatch else CoaddPsf(
                        inputRecorder.coaddInputs.ccds, skyInfo.wcs))

            coaddTempExpDict[a][v] = coaddTempExp
            coaddfilename = coaddloc + visit + "/" + "instcal" + visit + "." + str(
                xInd) + "_" + str(yInd) + ".fits"
            coaddTempExp.writeFits(coaddfilename)

    end = datetime.datetime.now()
    d = end - start
    f.write("time for creating co-add tempexps:\n ")
    f.write(str(d.total_seconds()))
    f.write("\n")

    #DFZ: stop here
    exit(0)

    start = datetime.datetime.now()

    config = AssembleCoaddConfig()
    assembleTask = AssembleCoaddTask(config=config)
    mergcoadds = {}
    for a in dfgby.indices:
        ccdsinPatch = len(dfgby.get_group(a)[0].ravel())
        xInd = a[0]
        yInd = a[1]

        imageScalerRes = prepareInputs(coaddTempExpDict[a].values(),
                                       coaddTempExpDict[a].keys(),
                                       assembleTask)
        mask = None
        doClip = False
        if mask is None:
            mask = assembleTask.getBadPixelMask()

        statsCtrl = afwMath.StatisticsControl()
        statsCtrl.setNumSigmaClip(assembleTask.config.sigmaClip)
        statsCtrl.setNumIter(assembleTask.config.clipIter)
        statsCtrl.setAndMask(mask)
        statsCtrl.setNanSafe(True)
        statsCtrl.setWeighted(True)
        statsCtrl.setCalcErrorFromInputVariance(True)
        for plane, threshold in assembleTask.config.maskPropagationThresholds.items(
        ):
            bit = afwImage.MaskU.getMaskPlane(plane)
            statsCtrl.setMaskPropagationThreshold(bit, threshold)

        if doClip:
            statsFlags = afwMath.MEANCLIP
        else:
            statsFlags = afwMath.MEAN

        coaddExposure = afwImage.ExposureF(skyInfo.bbox, skyInfo.wcs)
        coaddExposure.setCalib(assembleTask.scaleZeroPoint.getCalib())
        coaddExposure.getInfo().setCoaddInputs(
            assembleTask.inputRecorder.makeCoaddInputs())

        #remember to set metadata if you want any hope of running detection and measurement on this coadd:
        #self.assembleMetadata(coaddExposure, tempExpRefList, weightList)

        #most important thing is the psf
        coaddExposure.setFilter(coaddTempExpDict[a].values()[0].getFilter())
        coaddInputs = coaddExposure.getInfo().getCoaddInputs()

        for tempExp, weight in zip(coaddTempExpDict[a].values(),
                                   imageScalerRes.weightList):
            assembleTask.inputRecorder.addVisitToCoadd(coaddInputs, tempExp,
                                                       weight)

        #takes numCcds as argument

        coaddInputs.ccds.reserve(ccdsinPatch)
        coaddInputs.visits.reserve(len(imageScalerRes.dataIdList))
        psf = measAlg.CoaddPsf(coaddInputs.ccds, coaddExposure.getWcs())
        coaddExposure.setPsf(psf)

        maskedImageList = afwImage.vectorMaskedImageF()
        coaddMaskedImage = coaddExposure.getMaskedImage()
        for dataId, imageScaler, exposure in zip(
                imageScalerRes.dataIdList, imageScalerRes.imageScalerList,
                coaddTempExpDict[a].values()):
            print dataId, imageScaler, exposure
            maskedImage = exposure.getMaskedImage()
            imageScaler.scaleMaskedImage(maskedImage)
            maskedImageList.append(maskedImage)

        maskedImage = afwMath.statisticsStack(maskedImageList, statsFlags,
                                              statsCtrl,
                                              imageScalerRes.weightList)

        coaddMaskedImage.assign(maskedImage, skyInfo.bbox)
        coaddUtils.setCoaddEdgeBits(coaddMaskedImage.getMask(),
                                    coaddMaskedImage.getVariance())

        # write out Coadd!
        mergefilename = mergecoaddloc + str(xInd) + "_" + str(yInd) + ".fits"
        mergcoadds[a] = coaddExposure
        coaddExposure.writeFits(mergefilename)

    end = datetime.datetime.now()
    d = end - start
    f.write("time for creating merged co-adds:\n ")
    f.write(str(d.total_seconds()))
    f.write("\n")

    start = datetime.datetime.now()
    config = DetectCoaddSourcesConfig()
    detectCoaddSources = DetectCoaddSourcesTask(config=config)
    for a in dfgby.indices:

        # Detect on Coadd
        exp = mergcoadds[a]
        detRes = detectCoaddSources.runDetection(exp, idFactory=None)

    end = datetime.datetime.now()
    d = end - start
    f.write("time for detecting sources:\n ")
    f.write(str(d.total_seconds()))
    f.close()
Пример #19
0
                 " OMG I start again! \n")

########################################
####### Setup LSST begins
########################################
visit = 289697
ccdnum = 1
HOME_PATH = os.path.expanduser("~")
butler = dafPersist.Butler(HOME_PATH + '/lsst_data/raw')
#exposure = butler.get("instcal", visit=visit, ccdnum=ccdnum, filter='g', immediate=True)
#mask  = exposure.getMaskedImage().getMask().getArray() #TODO: move this matrix to SciDB
#variance = exposure.getMaskedImage().getVariance().getArray() #TODO: move this matrix to SciDB
#filename = HOME_PATH + "/lsst_data/raw/crblasted0289697/instcal0289697.1.fits"
#fitsHeader = afwImage.readMetadata(filename)
#wcs = afwImage.makeWcs(fitsHeader)
charImage = CharacterizeImageTask()
calibrateConfig = CalibrateConfig(doPhotoCal=False, doAstrometry=False)
calibrateTask = CalibrateTask(config=calibrateConfig)
makeCTEConfig = MakeCoaddTempExpConfig()
makeCTE = MakeCoaddTempExpTask(config=makeCTEConfig)
newSkyMapConfig = skymap.discreteSkyMap.DiscreteSkyMapConfig(
    projection='STG',
    decList=[-4.9325280994132905],
    patchInnerDimensions=[2000, 2000],
    radiusList=[4.488775723429071],
    pixelScale=0.333,
    rotation=0.0,
    patchBorder=100,
    raList=[154.10660740464786],
    tractOverlap=0.0)
Пример #20
0
    def run(self,
            ccdExposure,
            *,
            camera=None,
            bias=None,
            dark=None,
            flat=None,
            defects=None,
            linearizer=None,
            crosstalk=None,
            bfKernel=None,
            bfGains=None,
            ptc=None,
            crosstalkSources=None,
            isrBaseConfig=None):
        """Run isr and cosmic ray repair using, doing as much isr as possible.

        Retrieves as many calibration products as are available, and runs isr
        with those settings enabled, but always returns an assembled image at
        a minimum. Then performs cosmic ray repair if configured to.

        Parameters
        ----------
        ccdExposure : `lsst.afw.image.Exposure`
            The raw exposure that is to be run through ISR.  The
            exposure is modified by this method.
        camera : `lsst.afw.cameraGeom.Camera`, optional
            The camera geometry for this exposure. Required if
            one or more of ``ccdExposure``, ``bias``, ``dark``, or
            ``flat`` does not have an associated detector.
        bias : `lsst.afw.image.Exposure`, optional
            Bias calibration frame.
        linearizer : `lsst.ip.isr.linearize.LinearizeBase`, optional
            Functor for linearization.
        crosstalk : `lsst.ip.isr.crosstalk.CrosstalkCalib`, optional
            Calibration for crosstalk.
        crosstalkSources : `list`, optional
            List of possible crosstalk sources.
        dark : `lsst.afw.image.Exposure`, optional
            Dark calibration frame.
        flat : `lsst.afw.image.Exposure`, optional
            Flat calibration frame.
        ptc : `lsst.ip.isr.PhotonTransferCurveDataset`, optional
            Photon transfer curve dataset, with, e.g., gains
            and read noise.
        bfKernel : `numpy.ndarray`, optional
            Brighter-fatter kernel.
        bfGains : `dict` of `float`, optional
            Gains used to override the detector's nominal gains for the
            brighter-fatter correction. A dict keyed by amplifier name for
            the detector in question.
        defects : `lsst.ip.isr.Defects`, optional
            List of defects.
        fringes : `lsst.pipe.base.Struct`, optional
            Struct containing the fringe correction data, with
            elements:
            - ``fringes``: fringe calibration frame (`afw.image.Exposure`)
            - ``seed``: random seed derived from the ccdExposureId for random
                number generator (`uint32`)
        opticsTransmission: `lsst.afw.image.TransmissionCurve`, optional
            A ``TransmissionCurve`` that represents the throughput of the,
            optics, to be evaluated in focal-plane coordinates.
        filterTransmission : `lsst.afw.image.TransmissionCurve`
            A ``TransmissionCurve`` that represents the throughput of the
            filter itself, to be evaluated in focal-plane coordinates.
        sensorTransmission : `lsst.afw.image.TransmissionCurve`
            A ``TransmissionCurve`` that represents the throughput of the
            sensor itself, to be evaluated in post-assembly trimmed detector
            coordinates.
        atmosphereTransmission : `lsst.afw.image.TransmissionCurve`
            A ``TransmissionCurve`` that represents the throughput of the
            atmosphere, assumed to be spatially constant.
        detectorNum : `int`, optional
            The integer number for the detector to process.
        strayLightData : `object`, optional
            Opaque object containing calibration information for stray-light
            correction.  If `None`, no correction will be performed.
        illumMaskedImage : `lsst.afw.image.MaskedImage`, optional
            Illumination correction image.
        isrBaseConfig : `lsst.ip.isr.IsrTaskConfig`, optional
            An isrTask config to act as the base configuration. Options which
            involve applying a calibration product are ignored, but this allows
            for the configuration of e.g. the number of overscan columns.

        Returns
        -------
        result : `lsst.pipe.base.Struct`
            Result struct with component:
            - ``exposure`` : `afw.image.Exposure`
                The ISRed and cosmic-ray-repaired exposure.
        """
        isrConfig = isrBaseConfig if isrBaseConfig else IsrTask.ConfigClass()
        isrConfig.doBias = False
        isrConfig.doDark = False
        isrConfig.doFlat = False
        isrConfig.doFringe = False
        isrConfig.doDefect = False
        isrConfig.doLinearize = False
        isrConfig.doCrosstalk = False
        isrConfig.doBrighterFatter = False
        isrConfig.usePtcGains = False

        if bias:
            isrConfig.doBias = True
            self.log.info("Running with bias correction")

        if dark:
            isrConfig.doDark = True
            self.log.info("Running with dark correction")

        if flat:
            isrConfig.doFlat = True
            self.log.info("Running with flat correction")

        # TODO: deal with fringes here
        if defects:
            isrConfig.doDefect = True
            self.log.info("Running with defect correction")

        if linearizer:
            isrConfig.doLinearize = True
            self.log.info("Running with linearity correction")

        if crosstalk:
            isrConfig.doCrosstalk = True
            self.log.info("Running with crosstalk correction")

        if bfKernel:
            isrConfig.doBrighterFatter = True
            self.log.info("Running with brighter-fatter correction")

        if ptc:
            isrConfig.usePtcGains = True
            self.log.info("Running with ptc correction")

        isrConfig.doWrite = False
        isrTask = IsrTask(config=isrConfig)
        result = isrTask.run(
            ccdExposure,
            camera=camera,
            bias=bias,
            dark=dark,
            flat=flat,
            #  fringes=pipeBase.Struct(fringes=None),
            defects=defects,
            linearizer=linearizer,
            crosstalk=crosstalk,
            bfKernel=bfKernel,
            bfGains=bfGains,
            ptc=ptc,
            crosstalkSources=crosstalkSources,
            isGen3=True,
        )

        postIsr = result.exposure

        if self.config.doRepairCosmics:
            try:  # can fail due to too many CRs detected, and we always want an exposure back
                self.log.info("Repairing cosmics...")
                if postIsr.getPsf() is None:
                    installPsfTask = InstallGaussianPsfTask()
                    installPsfTask.run(postIsr)

                # TODO: try adding a reasonably wide Gaussian as a temp PSF
                # and then just running repairTask on its own without any
                # imChar. It should work, and be faster.
                repairConfig = CharacterizeImageTask.ConfigClass()
                repairConfig.doMeasurePsf = False
                repairConfig.doApCorr = False
                repairConfig.doDeblend = False
                repairConfig.doWrite = False
                repairConfig.repair.cosmicray.nCrPixelMax = 200000
                repairTask = CharacterizeImageTask(config=repairConfig)

                repairTask.repair.run(postIsr)
            except Exception as e:
                self.log.warning(f"During CR repair caught: {e}")

        # exposure is returned for convenience to mimic isrTask's API.
        return pipeBase.Struct(exposure=postIsr, outputExposure=postIsr)
Пример #21
0
 def setupCharTask(self):
     '''
     set up the CharacterizeImageTask task
     '''
     return CharacterizeImageTask(config=self.config)
Пример #22
0
    def testComponents(self):
        """Test that we can run the first-level subtasks of ProcessCcdTasks.

        This tests that we can run these subtasks from the command-line independently (they're all
        CmdLineTasks) as well as directly from Python (without giving them access to a Butler).

        Aside from verifying that no exceptions are raised, we simply tests that most persisted results are
        present and equivalent to both in-memory results.
        """
        outPath = tempfile.mkdtemp() if OutputName is None else "{}-Components".format(OutputName)
        # We'll use an input butler to get data for the tasks we call from Python, but we won't ever give it
        # to those tasks.
        inputButler = lsst.daf.persistence.Butler(InputDir)
        # Construct task instances we can use directly from Python
        isrTask = IsrTask(
            config=getObsTestConfig(IsrTask),
            name="isr2"
        )
        # If we ever enable astrometry and photocal in obs_test, we'll need to pass a refObjLoader to these
        # tasks.  To maintain the spirit of these tests, we'd ideally have a LoadReferenceObjectsTask class
        # that doesn't require a Butler.  If we don't, we should construct a butler-based on outside these
        # task constructors and pass the LoadReferenceObjectsTask instance to the task constructors.
        charImageTask = CharacterizeImageTask(
            config=getObsTestConfig(CharacterizeImageTask),
            name="charImage2"
        )
        calibrateTask = CalibrateTask(
            config=getObsTestConfig(CalibrateTask),
            name="calibrate2",
            icSourceSchema=charImageTask.schema
        )
        try:
            dataId = dict(visit=1)
            dataIdStrList = ["%s=%s" % (key, val) for key, val in dataId.items()]

            isrResult1 = IsrTask.parseAndRun(
                args=[InputDir, "--output", outPath, "--clobber-config", "--doraise", "--id"] + dataIdStrList,
                doReturnResults=True,
            )
            # We'll just use the butler to get the original image and calibration frames; it's not clear
            # extending the test coverage to include that is worth it.
            dataRef = inputButler.dataRef("raw", dataId=dataId)
            rawExposure = dataRef.get("raw", immediate=True)
            camera = dataRef.get("camera")
            isrData = isrTask.readIsrData(dataRef, rawExposure)
            isrResult2 = isrTask.run(
                rawExposure,
                bias=isrData.bias,
                linearizer=isrData.linearizer,
                flat=isrData.flat,
                defects=isrData.defects,
                fringes=isrData.fringes,
                bfKernel=isrData.bfKernel,
                camera=camera,
            )
            self.assertMaskedImagesEqual(
                isrResult1.parsedCmd.butler.get("postISRCCD", dataId, immediate=True).getMaskedImage(),
                isrResult1.resultList[0].result.exposure.getMaskedImage()
            )
            self.assertMaskedImagesEqual(
                isrResult2.exposure.getMaskedImage(),
                isrResult1.resultList[0].result.exposure.getMaskedImage()
            )

            icResult1 = CharacterizeImageTask.parseAndRun(
                args=[InputDir, "--output", outPath, "--clobber-config", "--doraise", "--id"] + dataIdStrList,
                doReturnResults=True,
            )
            icResult2 = charImageTask.run(isrResult2.exposure)
            self.assertMaskedImagesEqual(
                icResult1.parsedCmd.butler.get("icExp", dataId, immediate=True).getMaskedImage(),
                icResult1.resultList[0].result.exposure.getMaskedImage()
            )
            self.assertMaskedImagesEqual(
                icResult2.exposure.getMaskedImage(),
                icResult1.resultList[0].result.exposure.getMaskedImage()
            )
            self.assertCatalogsEqual(
                icResult1.parsedCmd.butler.get("icSrc", dataId, immediate=True),
                icResult1.resultList[0].result.sourceCat
            )
            self.assertCatalogsEqual(
                icResult2.sourceCat,
                icResult1.resultList[0].result.sourceCat,
                skipCols=("id", "parent")  # since we didn't want to pass in an ExposureIdInfo, IDs disagree
            )
            self.assertBackgroundListsEqual(
                icResult1.parsedCmd.butler.get("icExpBackground", dataId, immediate=True),
                icResult1.resultList[0].result.background
            )
            self.assertBackgroundListsEqual(
                icResult2.background,
                icResult1.resultList[0].result.background
            )

            calResult1 = CalibrateTask.parseAndRun(
                args=[InputDir, "--output", outPath, "--clobber-config", "--doraise", "--id"] + dataIdStrList,
                doReturnResults=True,
            )
            calResult2 = calibrateTask.run(
                icResult2.exposure,
                background=icResult2.background,
                icSourceCat=icResult2.sourceCat
            )
            self.assertMaskedImagesEqual(
                calResult1.parsedCmd.butler.get("calexp", dataId, immediate=True).getMaskedImage(),
                calResult1.resultList[0].result.exposure.getMaskedImage()
            )
            self.assertMaskedImagesEqual(
                calResult2.exposure.getMaskedImage(),
                calResult1.resultList[0].result.exposure.getMaskedImage()
            )
            self.assertCatalogsEqual(
                calResult1.parsedCmd.butler.get("src", dataId, immediate=True),
                calResult1.resultList[0].result.sourceCat
            )
            self.assertCatalogsEqual(
                calResult2.sourceCat,
                calResult1.resultList[0].result.sourceCat,
                skipCols=("id", "parent")
            )
            self.assertBackgroundListsEqual(
                calResult1.parsedCmd.butler.get("calexpBackground", dataId, immediate=True),
                calResult1.resultList[0].result.background
            )
            self.assertBackgroundListsEqual(
                calResult2.background,
                calResult1.resultList[0].result.background
            )

        finally:
            if OutputName is None:
                shutil.rmtree(outPath)
            else:
                print("testProcessCcd.py's output data saved to %r" % (OutputName,))