Пример #1
0
    def test_rectifiedSED(self):
        """
        Check for an extreme case that the SN seds are being rectified. This is
        done by setting up an extreme case where there will be negative seds, and
        checking that this is indeed the case, and checking that they are not
        negative if rectified.
        """

        snobj = SNObject(ra=30., dec=-60., source='salt2')
        snobj.set(z=0.96, t0=self.mjdobs, x1=-3., x0=1.8e-6)
        snobj.rectifySED = False
        times = np.arange(self.mjdobs - 50., self.mjdobs + 150., 1.)
        badTimes = []
        for time in times:
            sed = snobj.SNObjectSED(time=time,
                                    bandpass=self.lsstBandPass['r'])
            if any(sed.flambda < 0.):
                badTimes.append(time)
        # Check that there are negative SEDs
        assert(len(badTimes) > 0)
        snobj.rectifySED = True
        for time in badTimes:
            sed = snobj.SNObjectSED(time=time,
                                    bandpass=self.lsstBandPass['r'])
            self.assertGreaterEqual(sed.calcADU(bandpass=self.lsstBandPass['r'],
                                                photParams=self.rectify_photParams), 0.)
            self.assertFalse(any(sed.flambda < 0.))
Пример #2
0
 def __init__(self, z=0, t0=0, x0=1, x1=0, c=0, snra=0, sndec=0):
     """
     Parameters
     ----------
     z: float [0]
          Redshift of the SNIa object to pass to sncosmo.
     t0: float [0]
          Time in mjd of phase=0, corresponding to the B-band
          maximum.
     x0: float [1]
          Normalization factor for the lightcurves.
     x1: float [0]
          Empirical parameter controlling the stretch in time of the
          light curves
     c: float [0]
          Empirical parameter controlling the colors.
     snra: float [0]
          RA in degrees of the SNIa.
     sndec: float [0]
          Dec in degrees of the SNIa.
     """
     self.sn_obj = SNObject(snra, sndec)
     self.sn_obj.set(z=z,
                     t0=t0,
                     x0=x0,
                     x1=x1,
                     c=c,
                     hostebv=0,
                     hostr_v=3.1,
                     mwebv=0,
                     mwr_v=3.1)
     self.bp_dict = self.lsst_bp_dict
Пример #3
0
    def load_SNsed(self):
        """
        returns a list of SN seds in `lsst.sims.photUtils.Sed` observed within
        the spatio-temporal range specified by obs_metadata

        """
        c, x1, x0, t0, _z, ra, dec = self.column_by_name('c'),\
            self.column_by_name('x1'),\
            self.column_by_name('x0'),\
            self.column_by_name('t0'),\
            self.column_by_name('redshift'),\
            self.column_by_name('raJ2000'),\
            self.column_by_name('decJ2000')

        SNobject = SNObject()

        raDeg = np.degrees(ra)
        decDeg = np.degrees(dec)

        sedlist = []
        for i in range(self.numobjs):
            SNobject.set(z=_z[i], c=c[i], x1=x1[i], t0=t0[i], x0=x0[i])
            SNobject.setCoords(ra=raDeg[i], dec=decDeg[i])
            SNobject.mwEBVfromMaps()
            sed = SNobject.SNObjectSED(time=self.mjdobs,
                                       bandpass=self.lsstBandpassDict,
                                       applyExitinction=True)
            sedlist.append(sed)

        return sedlist
Пример #4
0
 def SNobj(fieldID, t0, snState=None):
     sn = SNObject(ra=np.degrees(so.ra(fieldID)),
                   dec=np.degrees(so.dec(fieldID)))
     sn.set(t0=t0)
     sn.set(z=0.5)
     sn.set_source_peakabsmag(bessellBpeakabsmag, 'bessellB', 'ab')
     return sn
Пример #5
0
    def get_phosimVars(self):
        """
        Obtain variables sedFilepath to be used to obtain unique filenames
        for each SED for phoSim and MagNorm which is also used. Note that aside
        from acting as a getter, this also writes spectra to 
        `self.sn_sedfile_prefix`snid_mjd_band.dat for each observation of
        interest
        """
        # construct the unique filename
        # method: snid_mjd(to 4 places of decimal)_bandpassname
        mjd = "_{:0.4f}_".format(self.mjdobs)
        mjd += self.obs_metadata.bandpass + '.dat'
        fnames = np.array([
            self.sn_sedfile_prefix + str(int(elem)) + mjd if isinstance(
                elem, numbers.Number) else self.sn_sedfile_prefix + str(elem) +
            mjd for elem in self.column_by_name('snid')
        ],
                          dtype='str')

        c, x1, x0, t0, z = self.column_by_name('c'),\
            self.column_by_name('x1'),\
            self.column_by_name('x0'),\
            self.column_by_name('t0'),\
            self.column_by_name('redshift')

        bp = Bandpass()
        bp.imsimBandpass()

        magNorms = np.zeros(len(fnames))

        snobject = SNObject()
        snobject.rectifySED = True
        for i in range(len(self.column_by_name('snid'))):
            # if t0 is nan, this was set by the catalog for dim SN, or SN
            #   outside redshift range, We will not provide a SED file for these
            if np.isnan(t0[i]):
                magNorms[i] = np.nan
                fnames[i] = None

            else:
                snobject.set(c=c[i], x1=x1[i], x0=x0[i], t0=t0[i], z=z[i])
                if snobject.modelOutSideTemporalRange == 'zero':
                    if self.mjdobs > snobject.maxtime(
                    ) or self.mjdobs < snobject.mintime():
                        magNorms[i] = np.nan
                        fnames[i] = None

                # SED in rest frame
                sed = snobject.SNObjectSourceSED(time=self.mjdobs)
                try:
                    magNorms[i] = sed.calcMag(bandpass=bp)
                except:
                    # sed.flambda = 1.0e-20
                    magNorms[i] = 1000.  # sed.calcMag(bandpass=bp)

                if self.writeSedFile:
                    sed.writeSED(fnames[i])

        return (fnames, magNorms)
Пример #6
0
    def lc(self, idx, maxObsHistID=None):
        """

        Parameters
        ----------
        """
        if maxObsHistID is None:
            maxObsHistID = self.maxObsHistID

        # obtain the model parameters from the population
        paramDict = self.population.modelparams(idx)
        self.model.setModelParameters(**paramDict)
        myra = paramDict['ra']
        mydec = paramDict['dec']
        
        timeRange = (self.model.minMjd, self.model.maxMjd)
        if None not in timeRange:
            queryTime = 'expMJD < {1} and expMJD > {0}'.format(timeRange[0], timeRange[1])
            df = self.pointings.copy().query(queryTime)
        else:
            df = self.pointings.copy()
        if self.pruneWithRadius:
            raise ValueError('Not implemented')
        numObs = len(self.pointings)
        modelFlux = np.zeros(numObs)
        fluxerr = np.zeros(numObs)

        sn = SNObject(myra, mydec)


        for i, rowtuple in enumerate(df.iterrows()):
            row = rowtuple[1]
            # print(row['expMJD'], row['filter'], row['fiveSigmaDepth'])
            bp = self.bandPasses[row['filter']]
            modelFlux[i] = self.model.modelFlux(row['expMJD'],
                                                bandpassobj=bp)
            fluxerr[i] = sn.catsimBandFluxError(time=row['expMJD'],
                                                bandpassobject=bp,
                                                fluxinMaggies=modelFlux[i],
                                                m5=row['fiveSigmaDepth'])

        
        rng = self.randomState
        df.reset_index(inplace=True)
        df['objid'] = np.ones(numObs)*np.int(idx)
        df['objid'] = df.objid.astype(np.int)
        df['fluxerr'] = fluxerr
        deviations = rng.normal(size=len(df)) 
        df['deviations'] = deviations
        df['zp'] = 0.
        df['ModelFlux'] = modelFlux
        df['flux'] = df['ModelFlux'] + df['deviations'] * df['fluxerr']
        df['zpsys']= 'ab'
        df['pid'] = self.pair_method(df.objid, df.obsHistID, self.maxObsHistID)
        df['pid'] = df.pid.astype(np.int)
        lc = df[['pid', 'obsHistID', 'objid', 'expMJD', 'filter', 'ModelFlux', 'fieldID', 'flux',
                 'fluxerr', 'deviations', 'zp', 'zpsys']]
        lc.set_index('pid', inplace=True)
        return lc
Пример #7
0
    def test_attributeDefaults(self):
        """
        Check the defaults and the setter properties for rectifySED and
        modelOutSideRange
        """
        snobj = SNObject(ra=30., dec=-60., source='salt2')
        self.assertEqual(snobj.rectifySED, True)
        self.assertEqual(snobj.modelOutSideTemporalRange, 'zero')

        snobj.rectifySED = False
        self.assertFalse(snobj.rectifySED, False)
        self.assertEqual(snobj.modelOutSideTemporalRange, 'zero')
Пример #8
0
 def test_raisingerror_forunimplementedmodelOutSideRange(self):
     """
     check that correct error is raised if the user tries to assign an
     un-implemented model value to
     `sims.catUtils.supernovae.SNObject.modelOutSideTemporalRange`
     """
     snobj = SNObject(ra=30., dec=-60., source='salt2')
     assert snobj.modelOutSideTemporalRange == 'zero'
     with self.assertRaises(ValueError) as context:
         snobj.modelOutSideTemporalRange = 'False'
     self.assertEqual('Model not implemented, defaulting to zero method\n',
                      context.exception.args[0])
Пример #9
0
    def setUp(self):
        """
        Setup tests
        SN_blank: A SNObject with no MW extinction
        """

        mydir = get_config_dir()
        print('===============================')
        print('===============================')
        print(mydir)
        print('===============================')
        print('===============================')
        # A range of wavelengths in Ang
        self.wave = np.arange(3000., 12000., 50.)
        # Equivalent wavelenths in nm
        self.wavenm = self.wave / 10.
        # Time to be used as Peak
        self.mjdobs = 571190

        # Check that we can set up a SED
        # with no extinction
        self.SN_blank = SNObject()
        self.SN_blank.setCoords(ra=30., dec=-60.)
        self.SN_blank.set(z=0.96, t0=571181, x1=2.66, c=0.353, x0=1.796e-6)
        self.SN_blank.set_MWebv(0.)

        self.SN_extincted = SNObject(ra=30., dec=-60.)
        self.SN_extincted.set(z=0.96,
                              t0=571181,
                              x1=2.66,
                              c=0.353,
                              x0=1.796112e-06)

        self.SNCosmoModel = self.SN_extincted.equivalentSNCosmoModel()
        self.rectify_photParams = PhotometricParameters()
        self.lsstBandPass = BandpassDict.loadTotalBandpassesFromFiles()
        self.SNCosmoBP = sncosmo.Bandpass(wave=self.lsstBandPass['r'].wavelen,
                                          trans=self.lsstBandPass['r'].sb,
                                          wave_unit=astropy.units.Unit('nm'),
                                          name='lsst_r')
Пример #10
0
def getSNCosmomags(mjd, filt, snpars_table, snid_in='MS_9940_3541'):
    asn = snpars_table.loc[snpars_table['snid_in'] == snid_in]
    sn_mod = SNObject(ra=asn.snra_in[0], dec=asn.sndec_in[0])
    sn_mod.set(z=asn.z_in[0],
               t0=asn.t0_in[0],
               x1=asn.x1_in[0],
               c=asn.c_in[0],
               x0=asn.x0_in[0])

    # this is probably not the thing to do
    flux = sn_mod.catsimBandFlux(mjd, LSST_BPass[filt])
    mag = sn_mod.catsimBandMag(LSST_BPass[filt], mjd, flux)
    return (flux, mag)
Пример #11
0
    def calc_sne_mags(self, obs_mjd, obs_filter):

        wavelen_max = 1800.
        wavelen_min = 30.
        wavelen_step = 0.1

        sn_magnorm_list = []
        sn_sed_names = []
        add_to_cat_list = []

        for idx in range(len(self.truth_cat)):

            sed_mjd = obs_mjd - self.truth_cat['t_delay'].iloc[idx]

            current_sn_obj = SNObject(ra=self.truth_cat['ra'].iloc[idx],
                                      dec=self.truth_cat['dec'].iloc[idx])
            current_sn_obj.set(z=self.truth_cat['redshift'].iloc[idx],
                               t0=self.truth_cat['t0'].iloc[idx],
                               x0=self.truth_cat['x0'].iloc[idx],
                               x1=self.truth_cat['x1'].iloc[idx],
                               c=self.truth_cat['c'].iloc[idx])

            # Following follows from
            # https://github.com/lsst/sims_catUtils/blob/master/python/lsst/sims/catUtils/mixins/sncat.py

            sn_sed_obj = current_sn_obj.SNObjectSourceSED(
                time=sed_mjd,
                wavelen=np.arange(wavelen_min, wavelen_max, wavelen_step))
            flux_500 = sn_sed_obj.flambda[np.where(
                sn_sed_obj.wavelen >= 499.99)][0]

            if flux_500 > 0.:
                sn_magnorm = sn_sed_obj.calcMag(bandpass=self.imSimBand)
                sn_name = None
                if self.write_sn_sed:
                    sn_name = '%s/specFileGLSN_%s_%s_%.4f.txt' % (
                        self.sed_folder_name,
                        self.truth_cat['dc2_sys_id'].iloc[idx],
                        self.truth_cat['image_number'].iloc[idx], obs_mjd)
                    sed_filename = '%s/%s' % (self.out_dir, sn_name)
                    sn_sed_obj.writeSED(sed_filename)
                    with open(sed_filename, 'rb') as f_in, gzip.open(
                            str(sed_filename + '.gz'), 'wb') as f_out:
                        shutil.copyfileobj(f_in, f_out)
                    os.remove(sed_filename)

                sn_magnorm_list.append(sn_magnorm)
                sn_sed_names.append(sn_name + '.gz')
                add_to_cat_list.append(idx)

        return add_to_cat_list, np.array(sn_magnorm_list), sn_sed_names
Пример #12
0
    def SN(self):
        """
        `lsst.sims.catsim.SNObject` instance with peakMJD set to t0
        """

        if self.snState is not None:
            return SNObject.fromSNState(self.snState)

        sn = SNObject(ra=self.radeg, dec=self.decdeg)
        sn.set(t0=self.t0)
        sn.set(z=0.5)
        sn.set_source_peakabsmag(self.bessellBpeakabsmag, 'bessellB', 'ab')

        return sn
Пример #13
0
    def SN(self):
        """
        `lsst.sims.catsim.SNObject` instance with peakMJD set to t0
        """

        if self._SN is not None:
            pass
            # return self._SN

        elif self.snState is not None:
            self._SN = SNObject.fromSNState(self.snState)
        else:
            sn = SNObject(ra=self.radeg, dec=self.decdeg)
            sn.set(t0=self.t0)
            sn.set(z=0.5)
            sn.set_source_peakabsmag(self.peakAbsMagBesselB, 'bessellB', 'ab')
            self._SN = sn

        return self._SN
Пример #14
0
    def get_snfluxes(self):

        c, x1, x0, t0, _z, ra, dec = self.column_by_name('c'),\
            self.column_by_name('x1'),\
            self.column_by_name('x0'),\
            self.column_by_name('t0'),\
            self.column_by_name('redshift'),\
            self.column_by_name('raJ2000'),\
            self.column_by_name('decJ2000')

        raDeg = np.degrees(ra)
        decDeg = np.degrees(dec)

        snobject = SNObject()
        # Initialize return array
        vals = np.zeros(shape=(self.numobjs, 19))
        for i, _ in enumerate(vals):
            snobject.set(z=_z[i], c=c[i], x1=x1[i], t0=t0[i], x0=x0[i])
            snobject.setCoords(ra=raDeg[i], dec=decDeg[i])
            snobject.mwEBVfromMaps()
            # Calculate fluxes
            vals[i, :6] = snobject.catsimManyBandFluxes(
                time=self.mjdobs,
                bandpassDict=self.lsstBandpassDict,
                observedBandPassInd=None)
            # Calculate magnitudes
            vals[i, 6:12] = snobject.catsimManyBandMags(
                time=self.mjdobs,
                bandpassDict=self.lsstBandpassDict,
                observedBandPassInd=None)

            vals[i, 12:18] = snobject.catsimManyBandADUs(
                time=self.mjdobs,
                bandpassDict=self.lsstBandpassDict,
                photParams=self.photometricparameters)
            vals[i, 18] = snobject.ebvofMW
        return (vals[:, 0], vals[:, 1], vals[:, 2], vals[:, 3], vals[:, 4],
                vals[:, 5], vals[:, 6], vals[:, 7], vals[:, 8], vals[:, 9],
                vals[:, 10], vals[:, 11], vals[:, 12], vals[:, 13],
                vals[:, 14], vals[:, 15], vals[:, 16], vals[:, 17], vals[:,
                                                                         18])
Пример #15
0
    def __init__(self,
                 catsim_cat,
                 visit_mjd,
                 specFileMap,
                 sed_path,
                 om10_cat='twinkles_lenses_v2.fits',
                 sne_cat='dc2_sne_cat.csv',
                 density_param=1.,
                 cached_sprinkling=False,
                 agn_cache_file=None,
                 sne_cache_file=None,
                 defs_file=None):
        """
        Parameters
        ----------
        catsim_cat: catsim catalog
            The results array from an instance catalog.
        visit_mjd: float
            The mjd of the visit
        specFileMap: 
            This will tell the instance catalog where to write the files
        om10_cat: optional, defaults to 'twinkles_lenses_v2.fits
            fits file with OM10 catalog
        sne_cat: optional, defaults to 'dc2_sne_cat.csv'
        density_param: `np.float`, optioanl, defaults to 1.0
            the fraction of eligible agn objects that become lensed and should
            be between 0.0 and 1.0.
        cached_sprinkling: boolean
            If true then pick from a preselected list of galtileids
        agn_cache_file: str
        sne_cache_file: str
        defs_file: str

        Returns
        -------
        updated_catalog:
            A new results array with lens systems added.
        """

        twinklesDir = getPackageDir('Twinkles')
        om10_cat = os.path.join(twinklesDir, 'data', om10_cat)
        self.catalog = catsim_cat
        # ****** THIS ASSUMES THAT THE ENVIRONMENT VARIABLE OM10_DIR IS SET *******
        lensdb = om10.DB(catalog=om10_cat, vb=False)
        self.lenscat = lensdb.lenses.copy()
        self.density_param = density_param
        self.bandpassDict = BandpassDict.loadTotalBandpassesFromFiles(
            bandpassNames=['i'])

        self.sne_catalog = pd.read_csv(
            os.path.join(twinklesDir, 'data', sne_cat))
        #self.sne_catalog = self.sne_catalog.iloc[:101] ### Remove this after testing
        self.used_systems = []
        self.visit_mjd = visit_mjd
        self.sn_obj = SNObject(0., 0.)
        self.write_dir = specFileMap.subdir_map['(^specFileGLSN)']
        self.sed_path = sed_path

        self.cached_sprinkling = cached_sprinkling
        if self.cached_sprinkling is True:
            if ((agn_cache_file is None) | (sne_cache_file is None)):
                raise AttributeError(
                    'Must specify cache files if using cached_sprinkling.')
            #agn_cache_file = os.path.join(twinklesDir, 'data', 'test_agn_galtile_cache.csv')
            self.agn_cache = pd.read_csv(agn_cache_file)
            #sne_cache_file = os.path.join(twinklesDir, 'data', 'test_sne_galtile_cache.csv')
            self.sne_cache = pd.read_csv(sne_cache_file)
        else:
            self.agn_cache = None
            self.sne_cache = None

        if defs_file is None:
            self.defs_file = os.path.join(twinklesDir, 'data',
                                          'catsim_defs.csv')
        else:
            self.defs_file = defs_file

        specFileStart = 'Burst'
        for key, val in sorted(iteritems(SpecMap.subdir_map)):
            if re.match(key, specFileStart):
                galSpecDir = str(val)
        self.galDir = str(
            getPackageDir('sims_sed_library') + '/' + galSpecDir + '/')

        self.imSimBand = Bandpass()
        self.imSimBand.imsimBandpass()
        #self.LRG_name = 'Burst.25E09.1Z.spec'
        #self.LRG = Sed()
        #self.LRG.readSED_flambda(str(galDir + self.LRG_name))
        #return

        #Calculate imsimband magnitudes of source galaxies for matching

        agn_fname = str(
            getPackageDir('sims_sed_library') + '/agnSED/agn.spec.gz')
        src_iband = self.lenscat['MAGI_IN']
        src_z = self.lenscat['ZSRC']
        self.src_mag_norm = []
        for src, s_z in zip(src_iband, src_z):
            agn_sed = Sed()
            agn_sed.readSED_flambda(agn_fname)
            agn_sed.redshiftSED(s_z, dimming=True)
            self.src_mag_norm.append(matchBase().calcMagNorm(
                [src], agn_sed, self.bandpassDict))
        #self.src_mag_norm = matchBase().calcMagNorm(src_iband,
        #                                            [agn_sed]*len(src_iband),
        #
        #                                            self.bandpassDict)

        self.defs_dict = {}
        with open(self.defs_file, 'r') as f:
            for line in f:
                line_defs = line.split(',')
                if len(line_defs) > 1:
                    self.defs_dict[line_defs[0]] = line_defs[1].split('\n')[0]
Пример #16
0
    def get_snbrightness(self):
        """
        getters for brightness related parameters of sn
        """
        if self._sn_object_cache is None or len(
                self._sn_object_cache) > 1000000:
            self._sn_object_cache = {}

        c, x1, x0, t0, _z, ra, dec = self.column_by_name('c'),\
            self.column_by_name('x1'),\
            self.column_by_name('x0'),\
            self.column_by_name('t0'),\
            self.column_by_name('redshift'),\
            self.column_by_name('raJ2000'),\
            self.column_by_name('decJ2000')

        raDeg = np.degrees(ra)
        decDeg = np.degrees(dec)

        ebv = self.column_by_name('EBV')
        id_list = self.column_by_name('snid')

        bandname = self.obs_metadata.bandpass
        if isinstance(bandname, list):
            raise ValueError('bandname expected to be string, but is list\n')
        bandpass = self.lsstBandpassDict[bandname]

        # Initialize return array so that it contains the values you would get
        # if you passed through a t0=self.badvalues supernova
        vals = np.array([[0.0] * len(t0), [np.inf] * len(t0),
                         [np.nan] * len(t0), [np.inf] * len(t0),
                         [0.0] * len(t0)]).transpose()

        for i in np.where(
                np.logical_and(
                    np.isfinite(t0),
                    np.abs(self.mjdobs - t0) < self.maxTimeSNVisible))[0]:

            if id_list[i] in self._sn_object_cache:
                SNobject = self._sn_object_cache[id_list[i]]
            else:
                SNobject = SNObject()
                SNobject.set(z=_z[i], c=c[i], x1=x1[i], t0=t0[i], x0=x0[i])
                SNobject.setCoords(ra=raDeg[i], dec=decDeg[i])
                SNobject.set_MWebv(ebv[i])
                self._sn_object_cache[id_list[i]] = SNobject

            if self.mjdobs <= SNobject.maxtime(
            ) and self.mjdobs >= SNobject.mintime():

                # Calculate fluxes
                fluxinMaggies = SNobject.catsimBandFlux(
                    time=self.mjdobs, bandpassobject=bandpass)
                mag = SNobject.catsimBandMag(time=self.mjdobs,
                                             fluxinMaggies=fluxinMaggies,
                                             bandpassobject=bandpass)
                vals[i, 0] = fluxinMaggies
                vals[i, 1] = mag
                flux_err = SNobject.catsimBandFluxError(
                    time=self.mjdobs,
                    bandpassobject=bandpass,
                    m5=self.obs_metadata.m5[bandname],
                    photParams=self.photometricparameters,
                    fluxinMaggies=fluxinMaggies,
                    magnitude=mag)

                mag_err = SNobject.catsimBandMagError(
                    time=self.mjdobs,
                    bandpassobject=bandpass,
                    m5=self.obs_metadata.m5[bandname],
                    photParams=self.photometricparameters,
                    magnitude=mag)
                sed = SNobject.SNObjectSED(time=self.mjdobs,
                                           bandpass=self.lsstBandpassDict,
                                           applyExtinction=True)
                adu = sed.calcADU(bandpass,
                                  photParams=self.photometricparameters)
                vals[i, 2] = flux_err
                vals[i, 3] = mag_err
                vals[i, 4] = adu

        return (vals[:, 0], vals[:, 1], vals[:, 2], vals[:, 3], vals[:, 4])
Пример #17
0
    def _light_curves_from_query(self, cat_dict, query_result, grp, lc_per_field=None):

        t_dict = {}
        gamma_dict = {}
        m5_dict = {}
        t_min = None
        t_max = None
        for bp_name in cat_dict:
            self.lsstBandpassDict[bp_name].sbTophi()

            # generate a 2-D numpy array containing MJDs, m5, and photometric gamma values
            # for each observation in the given bandpass
            raw_array = np.array([[obs.mjd.TAI, obs.m5[bp_name],
                                   calcGamma(self.lsstBandpassDict[bp_name],
                                             obs.m5[obs.bandpass],
                                             self.phot_params)]
                                  for obs in grp if obs.bandpass == bp_name]).transpose()

            if len(raw_array) > 0:

                t_dict[bp_name] = raw_array[0]

                m5_dict[bp_name] = raw_array[1]

                gamma_dict[bp_name] = raw_array[2]

                local_t_min = t_dict[bp_name].min()
                local_t_max = t_dict[bp_name].max()
                if t_min is None or local_t_min < t_min:
                    t_min = local_t_min

                if t_max is None or local_t_max > t_max:
                    t_max = local_t_max

        snobj = SNObject()

        cat = cat_dict[list(cat_dict.keys())[0]]  # does not need to be associated with a bandpass

        dummy_sed = Sed()

        n_actual_sn = 0  # how many SN have we actually delivered?

        for chunk in query_result:

            if lc_per_field is not None and n_actual_sn >= lc_per_field:
                break

            t_start_chunk = time.time()
            for sn in cat.iter_catalog(query_cache=[chunk]):
                sn_rng = self.sn_universe.getSN_rng(sn[1])
                sn_t0 = self.sn_universe.drawFromT0Dist(sn_rng)
                if sn[5] <= self.z_cutoff and np.isfinite(sn_t0) and \
                    sn_t0 < t_max + cat.maxTimeSNVisible and \
                    sn_t0 > t_min - cat.maxTimeSNVisible:

                    sn_c = self.sn_universe.drawFromcDist(sn_rng)
                    sn_x1 = self.sn_universe.drawFromx1Dist(sn_rng)
                    sn_x0 = self.sn_universe.drawFromX0Dist(sn_rng, sn_x1, sn_c, sn[4])

                    snobj.set(t0=sn_t0, c=sn_c, x1=sn_x1, x0=sn_x0, z=sn[5])

                    for bp_name in t_dict:
                        t_list = t_dict[bp_name]
                        m5_list = m5_dict[bp_name]
                        gamma_list = gamma_dict[bp_name]
                        bandpass = self.lsstBandpassDict[bp_name]
                        if len(t_list) == 0:
                            continue

                        if snobj.maxtime() >= t_list[0] and snobj.mintime() <= t_list[-1]:
                            active_dexes = np.where(np.logical_and(t_list >= snobj.mintime(),
                                                                   t_list <= snobj.maxtime()))

                            t_active = t_list[active_dexes]
                            m5_active = m5_list[active_dexes]
                            gamma_active = gamma_list[active_dexes]

                            if len(t_active) > 0:

                                wave_ang = bandpass.wavelen*10.0
                                mask = np.logical_and(wave_ang > snobj.minwave(),
                                                      wave_ang < snobj.maxwave())

                                wave_ang = wave_ang[mask]
                                snobj.set(mwebv=sn[6])
                                sn_ff_buffer = snobj.flux(time=t_active, wave=wave_ang)*10.0
                                flambda_grid = np.zeros((len(t_active), len(bandpass.wavelen)))
                                for ff, ff_sn in zip(flambda_grid, sn_ff_buffer):
                                    ff[mask] = np.where(ff_sn > 0.0, ff_sn, 0.0)

                                fnu_grid = flambda_grid*bandpass.wavelen* \
                                           bandpass.wavelen*dummy_sed._physParams.nm2m* \
                                           dummy_sed._physParams.ergsetc2jansky/dummy_sed._physParams.lightspeed

                                flux_list = \
                                (fnu_grid*bandpass.phi).sum(axis=1)*(bandpass.wavelen[1]-bandpass.wavelen[0])

                                acceptable = np.where(flux_list>0.0)

                                flux_error_list = flux_list[acceptable]/ \
                                                  calcSNR_m5(dummy_sed.magFromFlux(flux_list[acceptable]),
                                                             bandpass,
                                                             m5_active[acceptable], self.phot_params,
                                                             gamma=gamma_active[acceptable])

                                if len(acceptable) > 0:

                                    n_actual_sn += 1
                                    if lc_per_field is not None and n_actual_sn > lc_per_field:
                                        break

                                    if sn[0] not in self.truth_dict:
                                        self.truth_dict[sn[0]] = {}
                                        self.truth_dict[sn[0]]['t0'] = sn_t0
                                        self.truth_dict[sn[0]]['x1'] = sn_x1
                                        self.truth_dict[sn[0]]['x0'] = sn_x0
                                        self.truth_dict[sn[0]]['c'] = sn_c
                                        self.truth_dict[sn[0]]['z'] = sn[5]
                                        self.truth_dict[sn[0]]['E(B-V)'] = sn[6]

                                    if sn[0] not in self.mjd_dict:
                                        self.mjd_dict[sn[0]] = {}
                                        self.bright_dict[sn[0]] = {}
                                        self.sig_dict[sn[0]] = {}

                                    if bp_name not in self.mjd_dict[sn[0]]:
                                        self.mjd_dict[sn[0]][bp_name] = []
                                        self.bright_dict[sn[0]][bp_name] = []
                                        self.sig_dict[sn[0]][bp_name] = []

                                for tt, ff, ee in zip(t_active[acceptable], flux_list[acceptable],
                                                      flux_error_list[0]):

                                    self.mjd_dict[sn[0]][bp_name].append(tt)
                                    self.bright_dict[sn[0]][bp_name].append(ff/3631.0)
                                    self.sig_dict[sn[0]][bp_name].append(ee/3631.0)

            print("chunk of ", len(chunk), " took ", time.time()-t_start_chunk)
Пример #18
0
        reschar = ResChar.fromSNCosmoRes(resfit)
        print('fit passed')
    except:
        reschar = 'failure'
        print('failed for SNID {0} with {1} points'.format(
            snid, len(lcinstance.snCosmoLC())))
    #if reschar != 'failure':
    #    pass
    #    fig = None#sncosmo.plot_lc(lcinstance.snCosmoLC(), model=(truth, reschar.sncosmoModel))
    return snid, lcinstance, reschar, truth, fig


snidvals = minion_params.index.values
print('The list of SN has {} SN'.format(len(snidvals)))

snmodel = SNObject(ra=30., dec=-30.)


def writevals(snid, fh):
    x = inferParams(snid,
                    snmodel,
                    paramsDF=minion_params,
                    lcsDF=minion,
                    infer_method=sncosmo.fit_lc,
                    minsnr=0.)
    if x[2] != 'failure':
        covs = map(str, x[2].covariance.values[np.triu_indices(4)])
        params = map(str, x[2].parameters.values)
        std = str(x[2].mu_variance_linear()**0.5)
        ss = ','.join(params + covs + [std])
        # print('cov = ' + ' '.join(covs))
Пример #19
0
def main(ramax=58, ramin=56, decmin=-32, decmax=-31, t0=59215, tm=61406):
    query = query_tmpl.format(ramin, ramax, decmin, decmax)

    sntab = pd.read_sql_query(query, conn)
    #sntab.to_csv('./catalogs+tables/sn_cat_rectangle.csv')

    #if os.path.isfile('./catalogs+tables/full_t_visits_from_minion.csv'):
    #    visitab = pd.read_csv('./catalogs+tables/full_t_visits_from_minion.csv')
    #else:
    res = ObsMetaData.getObservationMetaData(boundLength=2,
                                             boundType='circle',
                                             fieldRA=(ramin - 3, ramax + 3),
                                             fieldDec=(decmin - 3, decmax + 3),
                                             expMJD=(t0, tm))
    parsed = [Odict(obsmd.summary['OpsimMetaData']) for obsmd in res]
    for obsmd, summ in zip(res, parsed):
        ditherRa = np.rad2deg(summ['descDitheredRA'])
        ditherDec = np.rad2deg(summ['descDitheredDec'])
        ditherRot = np.rad2deg(summ['descDitheredRotTelPos'])
        summ['descDitheredRotSkyPos'] = getRotSkyPos(ditherRa, ditherDec,
                                                     obsmd, ditherRot)

    df = pd.DataFrame(parsed)
    df = df[df['filter'].isin(('g', 'r', 'i', 'z'))]

    X = df[[
        'obsHistID', 'filter', 'FWHMeff', 'descDitheredRA', 'descDitheredDec',
        'descDitheredRotTelPos', 'airmass', 'fiveSigmaDepth', 'expMJD',
        'descDitheredRotSkyPos', 'fieldRA', 'fieldDec', 'rotSkyPos',
        'rotTelPos'
    ]].copy()
    X.descDitheredRA = np.rad2deg(X.descDitheredRA)
    X.descDitheredDec = np.rad2deg(X.descDitheredDec)
    X.descDitheredRotTelPos = np.rad2deg(X.descDitheredRotTelPos)
    #X.descDitheredRotSkyPos = np.rad2deg(X.descDitheredRotSkyPos) already in deg

    X.fieldRA = np.rad2deg(X.fieldRA)
    X.fieldDec = np.rad2deg(X.fieldDec)
    X.rotTelPos = np.rad2deg(X.rotTelPos)
    X.rotSkyPos = np.rad2deg(X.rotSkyPos)

    X['d1'] = angularSeparation(ramin, decmax, X.descDitheredRA.values,
                                X.descDitheredDec.values)
    X['d2'] = angularSeparation(ramin, decmin, X.descDitheredRA.values,
                                X.descDitheredDec.values)
    X['d3'] = angularSeparation(ramax, decmax, X.descDitheredRA.values,
                                X.descDitheredDec.values)
    X['d4'] = angularSeparation(ramax, decmin, X.descDitheredRA.values,
                                X.descDitheredDec.values)
    visitab = X.query('d1 < 1.75 | d2 < 1.75 | d3 < 1.75 |d4 < 1.75')
    del (X)
    del (df)
    visitab.to_csv('./catalogs+tables/full_t_visits_from_minion.csv')
    # setting the observation telescope status
    boresight = []
    orientation = []
    wcs_list = []
    for avisit in visitab.itertuples():
        bsight = geom.SpherePoint(avisit.descDitheredRA * geom.degrees,
                                  avisit.descDitheredDec * geom.degrees)
        orient = (90 - avisit.descDitheredRotSkyPos) * geom.degrees

        wcs_list.append([
            makeSkyWcs(t,
                       orient,
                       flipX=False,
                       boresight=bsight,
                       projection='TAN') for t in trans
        ])
        orientation.append(orient)
        boresight.append(bsight)

    times = visitab['expMJD']
    bands = visitab['filter']
    depths = visitab['fiveSigmaDepth']
    #colnames = ['mjd', 'filter']
    data_cols = {'mjd': times, 'filter': bands, 'visitn': visitab['obsHistID']}
    n_observ = []
    n_trueobserv = []
    for asn in sntab.itertuples():
        sn_mod = SNObject(ra=asn.snra_in, dec=asn.sndec_in)
        sn_mod.set(z=asn.z_in,
                   t0=asn.t0_in,
                   x1=asn.x1_in,
                   c=asn.c_in,
                   x0=asn.x0_in)

        sn_skyp = afwGeom.SpherePoint(asn.snra_in, asn.sndec_in,
                                      afwGeom.degrees)

        size = len(times)
        sn_flxs = np.zeros(size)
        sn_mags = np.zeros(size)
        sn_flxe = np.zeros(size)
        sn_mage = np.zeros(size)
        sn_obsrvd = []
        sn_observable = []
        ii = 0
        for mjd, filt, wcsl, m5 in zip(times, bands, wcs_list, depths):
            flux = sn_mod.catsimBandFlux(mjd, LSST_BPass[filt])
            mag = sn_mod.catsimBandMag(LSST_BPass[filt], mjd, flux)
            flux_er = sn_mod.catsimBandFluxError(mjd, LSST_BPass[filt], m5,
                                                 flux)
            mag_er = sn_mod.catsimBandMagError(mjd,
                                               LSST_BPass[filt],
                                               m5,
                                               magnitude=mag)

            # checking sensors containing this object
            contain = [box.contains(afwGeom.Point2I(wcs.skyToPixel(sn_skyp))) \
                           for box, wcs in zip(boxes, wcsl)]
            observed = np.sum(contain) > 0
            observable = observed & (flux > 0.0
                                     )  #(mag + mag_er < 27.0) & (mag_er < 0.5)
            # if observed:
            #     print('Overlaps ccd', names[np.where(contain)[0][0]])
            sn_observable.append(observable)
            sn_obsrvd.append(observed)
            sn_flxs[ii] = flux  # done
            sn_mags[ii] = mag
            sn_flxe[ii] = flux_er
            sn_mage[ii] = mag_er
            ii += 1

        data_cols[asn.snid_in + '_observable'] = sn_observable
        data_cols[asn.snid_in + '_observed'] = sn_obsrvd
        data_cols[asn.snid_in + '_flux'] = sn_flxs
        data_cols[asn.snid_in + '_fluxErr'] = sn_flxe
        data_cols[asn.snid_in + '_mag'] = sn_mags
        data_cols[asn.snid_in + '_magErr'] = sn_mage
        n_observ.append(np.sum(sn_obsrvd))
        n_trueobserv.append(np.sum(sn_observable))
    sntab['Nobserv'] = n_observ
    sntab['N_trueobserv'] = n_trueobserv

    lightcurves = pd.DataFrame(data_cols)
    dest_lc = './lightcurves/lightcurves_cat_rect_{}_{}_{}_{}.csv'
    lightcurves.to_csv(dest_lc.format(ramax, ramin, decmax, decmin))
    dest_snfile = './catalogs+tables/supernovae_cat_rect_{}_{}_{}_{}.csv'
    sntab.to_csv(dest_snfile.format(ramax, ramin, decmax, decmin))
    print("""Stored the lightcurves in {}, 
             the SN catalog in {}""".format(
        dest_lc.format(ramax, ramin, decmax, decmin),
        dest_snfile.format(ramax, ramin, decmax, decmin)))
    return
Пример #20
0
def validate_sne(cat_dir, obsid, fov_deg=2.1,
                 scatter_file=None, vanishing_file=None):
    """
    Parameters
    ----------
    cat_dir is the parent dir of $obsid

    obsid is the obsHistID of the pointing (an int)

    fov_deg is the radius of the field of view in degrees
    """

    project_dir = os.path.join('/global/projecta/projectdirs',
                               'lsst/groups/SSim/DC2/cosmoDC2_v1.1.4')

    sne_db_name = os.path.join(project_dir, 'sne_cosmoDC2_v1.1.4_MS_DDF.db')
    if not os.path.isfile(sne_db_name):
        raise RuntimeError("\n%s\nis not a file" % sne_db_name)

    instcat_dir = os.path.join(cat_dir, '%.8d' % obsid)
    if not os.path.isdir(instcat_dir):
        raise RuntimeError("\n%s\nis not a dir" % instcat_dir)

    sne_name = os.path.join(instcat_dir, 'sne_cat_%d.txt.gz' % obsid)
    if not os.path.isfile(sne_name):
        raise RuntimeError("\n%s\nis not a file" % sne_name)

    phosim_name = os.path.join(instcat_dir, 'phosim_cat_%d.txt' % obsid)
    if not os.path.isfile(phosim_name):
        raise RuntimeError("\n%s\nis not a file" % phosim_name)

    sed_dir = os.path.join(instcat_dir, "Dynamic")
    if not os.path.isdir(sed_dir):
        raise RuntimeError("\n%s\nis not a dir" % sed_dir)

    opsim_db = os.path.join("/global/projecta/projectdirs",
                            "lsst/groups/SSim/DC2",
                            "minion_1016_desc_dithered_v4_sfd.db")
    if not os.path.isfile(opsim_db):
        raise RuntimeError("\n%s\nis not a file" % opsim_db)

    band_from_int = 'ugrizy'
    bandpass = None
    with open(phosim_name, 'r') as in_file:
        for line in in_file:
            params = line.strip().split()
            if params[0] == 'filter':
                bandpass = band_from_int[int(params[1])]
                break
    if bandpass is None:
        raise RuntimeError("Failed to read in bandpass")

    bp_dict = photUtils.BandpassDict.loadTotalBandpassesFromFiles()

    with sqlite3.connect(opsim_db) as conn:
        c = conn.cursor()
        r = c.execute("SELECT descDitheredRA, descDitheredDec, expMJD FROM Summary "
                      "WHERE obsHistID==%d" % obsid).fetchall()
        pointing_ra = np.degrees(r[0][0])
        pointing_dec = np.degrees(r[0][1])
        expmjd = float(r[0][2])

    with sqlite3.connect(sne_db_name) as conn:
        c = conn.cursor()
        query = "SELECT snid_in, snra_in, sndec_in, "
        query += "c_in, mB, t0_in, x0_in, x1_in, z_in "
        query += "FROM sne_params WHERE ("

        where_clause = None
        half_space = htm.halfSpaceFromRaDec(pointing_ra, pointing_dec, fov_deg)
        bounds = half_space.findAllTrixels(6)

        for bound in bounds:
            if where_clause is not None:
                where_clause += " OR ("
            else:
                where_clause = "("

            if bound[0] == bound[1]:
                where_clause += "htmid_level_6==%d" % bound[0]
            else:
                where_clause += "htmid_level_6>=%d AND htmid_level_6<=%d" % (bound[0],bound[1])

            where_clause += ")"

        query += where_clause+")"

        sn_params = c.execute(query).fetchall()
    sn_ra = np.array([sn[1] for sn in sn_params])
    sn_dec = np.array([sn[2] for sn in sn_params])

    sn_d = angularSeparation(pointing_ra, pointing_dec,
                             sn_ra, sn_dec)

    valid = np.where(sn_d<=fov_deg)

    sn_ra_dec = {}
    sn_param_dict = {}
    for i_sn in valid[0]:
        sn = sn_params[i_sn]
        sn_param_dict[sn[0]] = sn[3:]
        sn_ra_dec[sn[0]] = sn[1:3]

    sne_in_instcat = set()
    d_mag_max = -1.0
    with gzip.open(sne_name, 'rb') as sne_cat_file:
        for sne_line in sne_cat_file:
            instcat_params = sne_line.strip().split(b' ')
            sne_id = instcat_params[1].decode('utf-8')
            if sne_id not in sn_param_dict:
                try:
                    sne_id_int = int(sne_id)
                    assert sne_id_int<1.5e10
                except (ValueError, AssertionError):
                    raise RuntimeError("\n%s\nnot in SNe db" % sne_id)

            sne_in_instcat.add(sne_id)

            control_params = sn_param_dict[sne_id]
            sed_name = os.path.join(instcat_dir, instcat_params[5].decode('utf-8'))
            if not os.path.isfile(sed_name):
                raise RuntimeError("\n%s\nis not a file" % sed_name)

            sed = photUtils.Sed()
            sed.readSED_flambda(sed_name, cache_sed=False)

            fnorm = photUtils.getImsimFluxNorm(sed, float(instcat_params[4]))
            sed.multiplyFluxNorm(fnorm)

            sed.redshiftSED(float(instcat_params[6]), dimming=True)
            a_x, b_x = sed.setupCCM_ab()
            A_v = float(instcat_params[15])
            R_v = float(instcat_params[16])
            EBV = A_v/R_v
            sed.addDust(a_x, b_x, A_v=A_v, R_v=R_v)

            sn_object = SNObject()
            sn_object.set_MWebv(EBV)
            sn_object.set(c=control_params[0], x1=control_params[4],
                          x0=control_params[3], t0=control_params[2],
                          z=control_params[5])

            sn_mag = sn_object.catsimBandMag(bp_dict[bandpass], expmjd)
            instcat_flux = sed.calcFlux(bp_dict[bandpass])
            instcat_mag = sed.magFromFlux(instcat_flux)
            d_mag = (sn_mag-instcat_mag)
            if not np.isfinite(d_mag):
                if np.isfinite(sn_mag) or np.isfinite(instcat_mag):
                    msg = '%s\ngave magnitudes %e %e (diff %e)' % (sne_id,
                                                                   sn_mag,
                                                                   instcat_mag,
                                                                   d_mag)
                    print(msg)

            if scatter_file is not None:
                scatter_file.write("%e %e %e\n" % (sn_mag, instcat_mag, d_mag))

            d_mag = np.abs(d_mag)
            if d_mag>d_mag_max:
                d_mag_max = d_mag
                #print('dmag %e -- %e (%e)' %
                #      (d_mag, instcat_mag,
                #       control_params[5]-float(instcat_params[6])))

    msg = '\n%s\n' % sne_name
    ct_missing = 0
    for sn_id in sn_param_dict:
        if sn_id in sne_in_instcat:
            continue
        control_params = sn_param_dict[sn_id]

        sn_object = SNObject()
        sn_object.set_MWebv(0.0)
        cc = control_params[0]
        x1 = control_params[4]
        x0 = control_params[3]
        t0 = control_params[2]
        zz = control_params[5]
        sn_object.set(c=cc, x1=x1, x0=x0, t0=t0, z=zz)

        sn_mag = sn_object.catsimBandMag(bp_dict[bandpass], expmjd)
        if vanishing_file is not None and np.isfinite(sn_mag):
            vanishing_file.write('%d %s %s %e ' % (obsid, bandpass, sn_id, sn_mag))
            vanishing_file.write('%e %e %e %.4f %e %.4f %e\n' %
                                 (cc,x0,x1,t0,zz,expmjd,expmjd-t0))