def testStarMap(self): mapPath = os.environ['SIMS_MAPS_DIR'] if os.path.isfile( os.path.join(mapPath, 'StarMaps/starDensity_r_nside_64.npz')): data = makeDataValues() # check that it works if nside does not match map nside of 64 nsides = [32, 64, 128] for nside in nsides: starmap = maps.StellarDensityMap() slicer1 = slicers.HealpixSlicer(nside=nside) slicer1.setupSlicer(data) result1 = starmap.run(slicer1.slicePoints) assert ('starMapBins' in list(result1.keys())) assert ('starLumFunc' in list(result1.keys())) assert (np.max(result1['starLumFunc'] > 0)) fieldData = makeFieldData() slicer2 = slicers.OpsimFieldSlicer() slicer2.setupSlicer(data, fieldData) result2 = starmap.run(slicer2.slicePoints) assert ('starMapBins' in list(result2.keys())) assert ('starLumFunc' in list(result2.keys())) assert (np.max(result2['starLumFunc'] > 0)) else: warnings.warn('Did not find stellar density map, skipping test.')
def testOut(self): """ Check that the metric bundle can generate the expected output """ nside = 8 slicer = slicers.HealpixSlicer(nside=nside) metric = metrics.MeanMetric(col='airmass') sql = 'filter="r"' stacker1 = stackers.RandomDitherFieldPerVisitStacker() stacker2 = stackers.GalacticStacker() map1 = maps.GalCoordsMap() map2 = maps.StellarDensityMap() metricB = metricBundles.MetricBundle(metric, slicer, sql, stackerList=[stacker1, stacker2], mapsList=[map1, map2]) database = os.path.join(getPackageDir('sims_data'), 'OpSimData', 'astro-lsst-01_2014.db') opsdb = db.OpsimDatabaseV4(database=database) resultsDb = db.ResultsDb(outDir=self.outDir) bgroup = metricBundles.MetricBundleGroup({0: metricB}, opsdb, outDir=self.outDir, resultsDb=resultsDb) bgroup.runAll() bgroup.plotAll() bgroup.writeAll() opsdb.close() outThumbs = glob.glob(os.path.join(self.outDir, 'thumb*')) outNpz = glob.glob(os.path.join(self.outDir, '*.npz')) outPdf = glob.glob(os.path.join(self.outDir, '*.pdf')) # By default, make 3 plots for healpix assert (len(outThumbs) == 3) assert (len(outPdf) == 3) assert (len(outNpz) == 1)
def testOut(self): """ Check that the metric bundle can generate the expected output """ nside = 8 slicer = slicers.HealpixSlicer(nside=nside) metric = metrics.MeanMetric(col='airmass') sql = 'filter="r"' stacker1 = stackers.RandomDitherFieldPerVisitStacker() stacker2 = stackers.GalacticStacker() map1 = maps.GalCoordsMap() map2 = maps.StellarDensityMap() metricB = metricBundles.MetricBundle(metric, slicer, sql, stackerList=[stacker1, stacker2]) filepath = os.path.join(os.getenv('SIMS_MAF_DIR'), 'tests/') database = os.path.join(filepath, 'opsimblitz1_1133_sqlite.db') opsdb = db.OpsimDatabase(database=database) resultsDb = db.ResultsDb(outDir=self.outDir) bgroup = metricBundles.MetricBundleGroup({0: metricB}, opsdb, outDir=self.outDir, resultsDb=resultsDb) bgroup.runAll() bgroup.plotAll() bgroup.writeAll() outThumbs = glob.glob(os.path.join(self.outDir, 'thumb*')) outNpz = glob.glob(os.path.join(self.outDir, '*.npz')) outPdf = glob.glob(os.path.join(self.outDir, '*.pdf')) # By default, make 3 plots for healpix assert (len(outThumbs) == 3) assert (len(outPdf) == 3) assert (len(outNpz) == 1)
def scienceRadarBatch(colmap=None, runName='opsim', extraSql=None, extraMetadata=None, nside=64, benchmarkArea=18000, benchmarkNvisits=825, DDF=True): """A batch of metrics for looking at survey performance relative to the SRD and the main science drivers of LSST. Parameters ---------- """ # Hide dependencies from mafContrib.LSSObsStrategy.galaxyCountsMetric_extended import GalaxyCountsMetric_extended from mafContrib import (Plasticc_metric, plasticc_slicer, load_plasticc_lc, TdePopMetric, generateTdePopSlicer, generateMicrolensingSlicer, MicrolensingMetric) if colmap is None: colmap = ColMapDict('fbs') if extraSql is None: extraSql = '' if extraSql == '': joiner = '' else: joiner = ' and ' bundleList = [] # Get some standard per-filter coloring and sql constraints filterlist, colors, filterorders, filtersqls, filtermetadata = filterList(all=False, extraSql=extraSql, extraMetadata=extraMetadata) standardStats = standardSummary(withCount=False) healslicer = slicers.HealpixSlicer(nside=nside) subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()] # Load up the plastic light curves models = ['SNIa-normal', 'KN'] plasticc_models_dict = {} for model in models: plasticc_models_dict[model] = list(load_plasticc_lc(model=model).values()) ######################### # SRD, DM, etc ######################### fOb = fOBatch(runName=runName, colmap=colmap, extraSql=extraSql, extraMetadata=extraMetadata, benchmarkArea=benchmarkArea, benchmarkNvisits=benchmarkNvisits) astromb = astrometryBatch(runName=runName, colmap=colmap, extraSql=extraSql, extraMetadata=extraMetadata) rapidb = rapidRevisitBatch(runName=runName, colmap=colmap, extraSql=extraSql, extraMetadata=extraMetadata) # loop through and modify the display dicts - set SRD as group and their previous 'group' as the subgroup temp_list = [] for key in fOb: temp_list.append(fOb[key]) for key in astromb: temp_list.append(astromb[key]) for key in rapidb: temp_list.append(rapidb[key]) for metricb in temp_list: metricb.displayDict['subgroup'] = metricb.displayDict['group'].replace('SRD', '').lstrip(' ') metricb.displayDict['group'] = 'SRD' bundleList.extend(temp_list) displayDict = {'group': 'SRD', 'subgroup': 'Year Coverage', 'order': 0, 'caption': 'Number of years with observations.'} slicer = slicers.HealpixSlicer(nside=nside) metric = metrics.YearCoverageMetric() for f in filterlist: plotDict = {'colorMin': 7, 'colorMax': 10, 'color': colors[f]} summary = [metrics.AreaSummaryMetric(area=18000, reduce_func=np.mean, decreasing=True, metricName='N Seasons (18k) %s' % f)] bundleList.append(mb.MetricBundle(metric, slicer, filtersqls[f], plotDict=plotDict, metadata=filtermetadata[f], displayDict=displayDict, summaryMetrics=summary)) ######################### # Solar System ######################### # Generally, we need to run Solar System metrics separately; they're a multi-step process. ######################### # Cosmology ######################### displayDict = {'group': 'Cosmology', 'subgroup': 'Galaxy Counts', 'order': 0, 'caption': None} plotDict = {'percentileClip': 95., 'nTicks': 5} sql = extraSql + joiner + 'filter="i"' metadata = combineMetadata(extraMetadata, 'i band') metric = GalaxyCountsMetric_extended(filterBand='i', redshiftBin='all', nside=nside) summary = [metrics.AreaSummaryMetric(area=18000, reduce_func=np.sum, decreasing=True, metricName='N Galaxies (18k)')] summary.append(metrics.SumMetric(metricName='N Galaxies (all)')) # make sure slicer has cache off slicer = slicers.HealpixSlicer(nside=nside, useCache=False) bundle = mb.MetricBundle(metric, slicer, sql, plotDict=plotDict, metadata=metadata, displayDict=displayDict, summaryMetrics=summary, plotFuncs=subsetPlots) bundleList.append(bundle) displayDict['order'] += 1 # let's put Type Ia SN in here displayDict['subgroup'] = 'SNe Ia' # XXX-- use the light curves from PLASTICC here displayDict['caption'] = 'Fraction of normal SNe Ia' sql = extraSql slicer = plasticc_slicer(plcs=plasticc_models_dict['SNIa-normal'], seed=42, badval=0) metric = Plasticc_metric(metricName='SNIa') # Set the maskval so that we count missing objects as zero. summary_stats = [metrics.MeanMetric(maskVal=0)] plotFuncs = [plots.HealpixSkyMap()] bundle = mb.MetricBundle(metric, slicer, sql, runName=runName, summaryMetrics=summary_stats, plotFuncs=plotFuncs, metadata=extraMetadata, displayDict=displayDict) bundleList.append(bundle) displayDict['order'] += 1 displayDict['subgroup'] = 'Camera Rotator' displayDict['caption'] = 'Kuiper statistic (0 is uniform, 1 is delta function) of the ' slicer = slicers.HealpixSlicer(nside=nside) metric1 = metrics.KuiperMetric('rotSkyPos') metric2 = metrics.KuiperMetric('rotTelPos') for f in filterlist: for m in [metric1, metric2]: plotDict = {'color': colors[f]} displayDict['order'] = filterorders[f] displayDict['caption'] += f"{m.colname} for visits in {f} band." bundleList.append(mb.MetricBundle(m, slicer, filtersqls[f], plotDict=plotDict, displayDict=displayDict, summaryMetrics=standardStats, plotFuncs=subsetPlots)) # XXX--need some sort of metric for weak lensing ######################### # Variables and Transients ######################### displayDict = {'group': 'Variables/Transients', 'subgroup': 'Periodic Stars', 'order': 0, 'caption': None} for period in [0.5, 1, 2,]: for magnitude in [21., 24.]: amplitudes = [0.05, 0.1, 1.0] periods = [period] * len(amplitudes) starMags = [magnitude] * len(amplitudes) plotDict = {'nTicks': 3, 'colorMin': 0, 'colorMax': 3, 'xMin': 0, 'xMax': 3} metadata = combineMetadata('P_%.1f_Mag_%.0f_Amp_0.05-0.1-1' % (period, magnitude), extraMetadata) sql = None displayDict['caption'] = 'Metric evaluates if a periodic signal of period %.1f days could ' \ 'be detected for an r=%i star. A variety of amplitudes of periodicity ' \ 'are tested: [1, 0.1, and 0.05] mag amplitudes, which correspond to ' \ 'metric values of [1, 2, or 3]. ' % (period, magnitude) metric = metrics.PeriodicDetectMetric(periods=periods, starMags=starMags, amplitudes=amplitudes, metricName='PeriodDetection') bundle = mb.MetricBundle(metric, healslicer, sql, metadata=metadata, displayDict=displayDict, plotDict=plotDict, plotFuncs=subsetPlots, summaryMetrics=standardStats) bundleList.append(bundle) displayDict['order'] += 1 # XXX add some PLASTICC metrics for kilovnova and tidal disruption events. displayDict['subgroup'] = 'KN' displayDict['caption'] = 'Fraction of Kilonova (from PLASTICC)' displayDict['order'] = 0 slicer = plasticc_slicer(plcs=plasticc_models_dict['KN'], seed=43, badval=0) metric = Plasticc_metric(metricName='KN') plotFuncs = [plots.HealpixSkyMap()] summary_stats = [metrics.MeanMetric(maskVal=0)] bundle = mb.MetricBundle(metric, slicer, extraSql, runName=runName, summaryMetrics=summary_stats, plotFuncs=plotFuncs, metadata=extraMetadata, displayDict=displayDict) bundleList.append(bundle) # Tidal Disruption Events displayDict['subgroup'] = 'TDE' displayDict['caption'] = 'TDE lightcurves that could be identified' metric = TdePopMetric() slicer = generateTdePopSlicer() sql = '' plotDict = {'reduceFunc': np.sum, 'nside': 128} plotFuncs = [plots.HealpixSkyMap()] bundle = mb.MetricBundle(metric, slicer, sql, runName=runName, plotDict=plotDict, plotFuncs=plotFuncs, summaryMetrics=[metrics.MeanMetric(maskVal=0)], displayDict=displayDict) bundleList.append(bundle) # Microlensing events displayDict['subgroup'] = 'Microlensing' displayDict['caption'] = 'Fast microlensing events' plotDict = {'nside': 128} sql = '' slicer = generateMicrolensingSlicer(min_crossing_time=1, max_crossing_time=10) metric = MicrolensingMetric(metricName='Fast Microlensing') bundle = mb.MetricBundle(metric, slicer, sql, runName=runName, summaryMetrics=[metrics.MeanMetric(maskVal=0)], plotFuncs=[plots.HealpixSkyMap()], metadata=extraMetadata, displayDict=displayDict, plotDict=plotDict) bundleList.append(bundle) displayDict['caption'] = 'Slow microlensing events' slicer = generateMicrolensingSlicer(min_crossing_time=100, max_crossing_time=1500) metric = MicrolensingMetric(metricName='Slow Microlensing') bundle = mb.MetricBundle(metric, slicer, sql, runName=runName, summaryMetrics=[metrics.MeanMetric(maskVal=0)], plotFuncs=[plots.HealpixSkyMap()], metadata=extraMetadata, displayDict=displayDict, plotDict=plotDict) bundleList.append(bundle) ######################### # Milky Way ######################### displayDict = {'group': 'Milky Way', 'subgroup': ''} displayDict['subgroup'] = 'N stars' slicer = slicers.HealpixSlicer(nside=nside, useCache=False) sum_stats = [metrics.SumMetric(metricName='Total N Stars, crowding')] for f in filterlist: stellar_map = maps.StellarDensityMap(filtername=f) displayDict['order'] = filterorders[f] displayDict['caption'] = 'Number of stars in %s band with an measurement error due to crowding ' \ 'of less than 0.2 mag' % f # Configure the NstarsMetric - note 'filtername' refers to the filter in which to evaluate crowding metric = metrics.NstarsMetric(crowding_error=0.2, filtername=f, ignore_crowding=False, seeingCol=colmap['seeingGeom'], m5Col=colmap['fiveSigmaDepth'], maps=[]) plotDict = {'nTicks': 5, 'logScale': True, 'colorMin': 100} bundle = mb.MetricBundle(metric, slicer, filtersqls[f], runName=runName, summaryMetrics=sum_stats, plotFuncs=subsetPlots, plotDict=plotDict, displayDict=displayDict, mapsList=[stellar_map]) bundleList.append(bundle) slicer = slicers.HealpixSlicer(nside=nside, useCache=False) sum_stats = [metrics.SumMetric(metricName='Total N Stars, no crowding')] for f in filterlist: stellar_map = maps.StellarDensityMap(filtername=f) displayDict['order'] = filterorders[f] displayDict['caption'] = 'Number of stars in %s band with an measurement error ' \ 'of less than 0.2 mag, not considering crowding' % f # Configure the NstarsMetric - note 'filtername' refers to the filter in which to evaluate crowding metric = metrics.NstarsMetric(crowding_error=0.2, filtername=f, ignore_crowding=True, seeingCol=colmap['seeingGeom'], m5Col=colmap['fiveSigmaDepth'], metricName='Nstars_no_crowding', maps=[]) plotDict = {'nTicks': 5, 'logScale': True, 'colorMin': 100} bundle = mb.MetricBundle(metric, slicer, filtersqls[f], runName=runName, summaryMetrics=sum_stats, plotFuncs=subsetPlots, plotDict=plotDict, displayDict=displayDict, mapsList=[stellar_map]) bundleList.append(bundle) ######################### # DDF ######################### if DDF: # Hide this import to avoid adding a dependency. from lsst.sims.featureScheduler.surveys import generate_dd_surveys, Deep_drilling_survey ddf_surveys = generate_dd_surveys() # Add on the Euclid fields # XXX--to update. Should have a spot where all the DDF locations are stored. ddf_surveys.append(Deep_drilling_survey([], 58.97, -49.28, survey_name='DD:EDFSa')) ddf_surveys.append(Deep_drilling_survey([], 63.6, -47.60, survey_name='DD:EDFSb')) # For doing a high-res sampling of the DDF for co-adds ddf_radius = 1.8 # Degrees ddf_nside = 512 ra, dec = hpid2RaDec(ddf_nside, np.arange(hp.nside2npix(ddf_nside))) displayDict = {'group': 'DDF depths', 'subgroup': None} for survey in ddf_surveys: displayDict['subgroup'] = survey.survey_name # Crop off the u-band only DDF if survey.survey_name[0:4] != 'DD:u': dist_to_ddf = angularSeparation(ra, dec, np.degrees(survey.ra), np.degrees(survey.dec)) goodhp = np.where(dist_to_ddf <= ddf_radius) slicer = slicers.UserPointsSlicer(ra=ra[goodhp], dec=dec[goodhp], useCamera=False) for f in filterlist: metric = metrics.Coaddm5Metric(metricName=survey.survey_name + ', ' + f) summary = [metrics.MedianMetric(metricName='Median depth ' + survey.survey_name+', ' + f)] plotDict = {'color': colors[f]} sql = filtersqls[f] displayDict['order'] = filterorders[f] displayDict['caption'] = 'Coadded m5 depth in %s band.' % (f) bundle = mb.MetricBundle(metric, slicer, sql, metadata=filtermetadata[f], displayDict=displayDict, summaryMetrics=summary, plotFuncs=[], plotDict=plotDict) bundleList.append(bundle) displayDict = {'group': 'DDF Transients', 'subgroup': None} for survey in ddf_surveys: displayDict['subgroup'] = survey.survey_name if survey.survey_name[0:4] != 'DD:u': slicer = plasticc_slicer(plcs=plasticc_models_dict['SNIa-normal'], seed=42, ra_cen=survey.ra, dec_cen=survey.dec, radius=np.radians(3.), useCamera=False) metric = Plasticc_metric(metricName=survey.survey_name+' SNIa') sql = extraSql summary_stats = [metrics.MeanMetric(maskVal=0)] plotFuncs = [plots.HealpixSkyMap()] bundle = mb.MetricBundle(metric, slicer, sql, runName=runName, summaryMetrics=summary_stats, plotFuncs=plotFuncs, metadata=extraMetadata, displayDict=displayDict) bundleList.append(bundle) displayDict['order'] = 10 # Set the runName for all bundles and return the bundleDict. for b in bundleList: b.setRunName(runName) bundleDict = mb.makeBundlesDictFromList(bundleList) return bundleDict