Пример #1
0
def create_network():
    t_size = tf.placeholder_with_default(figure_size, [])
    nets = []
    for k in range(batch_size):
        with tf.variable_scope(f"CPPN_layer_{k}"):
            nets.append(cppn(t_size, normalize=True))

    return tf.concat(nets, axis=0)
Пример #2
0
def create_network(BS):
    nets = []
    
    for k in range(BS):
        with tf.variable_scope(f"CPPN_layer_{k}"):
            nets.append(cppn(t_size, normalize=False))

    net = tf.concat(nets, axis=0)
    return net
Пример #3
0
def render_set(
    channel,
    n_iter,
    prefix,
    starting_pos=None,
    force=False,
    objective=None,
):

    f_model = os.path.join(save_model_dest, channel + f"_{prefix}.npy")
    f_image = os.path.join(save_image_dest, channel + f"_{prefix}.png")
    if os.path.exists(f_model) and not force:
        return True

    print("Starting", channel, prefix)
    obj = objective

    # Add this to "sharpen" the image... too much and it gets crazy
    #obj += 0.001*objectives.total_variation()

    sess = create_session()
    t_size = tf.placeholder_with_default(size_n, [])

    param_f = lambda: cppn(t_size)

    T = render.make_vis_T(
        model,
        obj,
        param_f=param_f,
        transforms=[],
        optimizer=optimizer,
    )
    tf.global_variables_initializer().run()

    # Assign the starting weights
    if starting_pos is not None:
        for v, x in zip(tf.trainable_variables(), starting_pos):
            sess.run(tf.assign(v, x))

    for i in tqdm(range(n_iter)):
        _, loss = sess.run([
            T("vis_op"),
            T("loss"),
        ])

    # Save trained variables
    train_vars = sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
    params = np.array(sess.run(train_vars), object)

    save(params, f_model)

    # Save final image
    images = T("input").eval({t_size: 600})
    img = images[0]
    sess.close()

    imsave(f_image, img)
Пример #4
0
def render_set(n, channel):

    print("Starting", channel, n)
    obj = objectives.channel(channel, n)

    # Add this to "sharpen" the image... too much and it gets crazy
    #obj += 0.001*objectives.total_variation()

    sess = create_session()
    t_size = tf.placeholder_with_default(size_n, [])

    f_model = os.path.join(save_model_dest, channel + f"_{n}.npy")

    T = render.make_vis_T(
        model,
        obj,
        param_f=lambda: cppn(t_size),
        transforms=[],
        optimizer=optimizer,
    )
    tf.global_variables_initializer().run()
    train_vars = sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)

    if not os.path.exists(f_model):

        for i in tqdm(range(training_steps)):
            _, loss = sess.run([
                T("vis_op"),
                T("loss"),
            ])

        # Save trained variables
        params = np.array(sess.run(train_vars), object)
        save(params, f_model)
    else:
        params = load(f_model)

    # Save final image
    feed_dict = dict(zip(train_vars, params))
    feed_dict[t_size] = image_size
    images = T("input").eval(feed_dict)
    img = images[0]
    sess.close()

    f_image = os.path.join(save_image_dest, channel + f"_{n}.jpg")
    imageio.imwrite(f_image, img)
    print(f"Saved to {f_image}")
Пример #5
0
model_cutoff = 80
extension = 'png'

beats_per_frame = 1
sigma_weight = 1 / 3.0
exag = 0.005

bpm = 127
fps = 30

save_dest = "results/interpolation_smooth"
os.system(f'mkdir -p {save_dest}')

sess = create_session()
t_size = tf.placeholder_with_default(200, [])
t_image = cppn(t_size)
train_vars = sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)

# avconv -y -r 30  -i "%08d.png"  -b:v 2400k ../wiggle6.mp4


def render_params(params, size=224):
    feed_dict = dict(zip(train_vars, params))
    feed_dict[t_size] = size
    return sess.run(t_image, feed_dict)[0]


f_models = sorted(glob.glob("results/smooth_models/*000*.npy"))

print(f"Loading models. Found {len(f_models)} total.")
Пример #6
0
def build_sprites(local_root='.',
                  graph_version=None,
                  model_loader=None,
                  vis=None,
                  layers=None,
                  vis_filename='vis.js'):

    if graph_version is None:
        raise ValueError("graph_version cannot be None")

    if model_loader is None:
        raise ValueError("model_loader cannot be None")

    graph_version_path = os.path.join(local_root, graph_version)

    if not os.path.isdir(graph_version_path):
        raise ValueError(
            "No graph vis directory: {}".format(graph_version_path))

    if vis is None:
        vis = {}

    update_dict_from_json(json_path=os.path.join(graph_version_path,
                                                 vis_filename),
                          updatee=vis)

    #
    graph_steps = vis['steps'] if 'steps' in vis else []

    if len(graph_steps) == 0:
        print("no graph instances")
        return

    for graph_step in graph_steps:

        graph_step_dir = os.path.join(graph_version_path, graph_step)
        image_dir = os.path.join(graph_step_dir, 'sprites')
        image_consumed_dir = os.path.join(graph_step_dir, 'sprites_consumed')
        image_scum_dir = os.path.join(graph_step_dir, 'sprites_scum')
        sprite_map_dir = os.path.join(graph_step_dir, 'spritemaps')

        log_path = os.path.join(graph_step_dir, 'losses.csv')

        if not os.path.isdir(graph_step_dir):
            os.mkdir(graph_step_dir)
        if not os.path.isdir(image_dir):
            os.mkdir(image_dir)
        if not os.path.isdir(image_consumed_dir):
            os.mkdir(image_consumed_dir)
        if not os.path.isdir(sprite_map_dir):
            os.mkdir(sprite_map_dir)

        sprite_dirs = [
            d for d in [image_dir, image_consumed_dir, image_scum_dir]
            if os.path.isdir(d)
        ]

        # graph step specific config
        step_vis = deepcopy(vis)

        update_dict_from_json(json_path=os.path.join(graph_step_dir,
                                                     vis_filename),
                              updatee=step_vis)

        #
        max_index = step_vis['max_index'] if 'max_index' in step_vis else 2048
        scale = step_vis['scale'] if 'scale' in step_vis else 64
        thresholds = step_vis['thresholds'] if 'thresholds' in step_vis else [
            64
        ]
        vis_loss = step_vis['loss'] if 'loss' in step_vis else {}

        batch_id = get_next_batch_id(loss_log_path=log_path)

        # drives off model json - as might be customised
        graph_model = get_graph_model(graph_version=graph_version,
                                      model_loader=model_loader)

        layers = graph_model['layers']

        # if not None and not empty then only build sprites for these layers/indexes
        if 'target_layers' in vis:
            target_layers = vis['target_layers']
            layers = [
                layer for layer in layers if target_layers is None
                or len(target_layers) == 0 or layer['index'] in target_layers
            ]

        target_indexes = [] if 'target_indexes' not in vis else vis[
            'target_indexes']

        use_cppn = True if 'param' in vis and vis['param'] == 'cppn' else False

        # load existing sprite details
        existing_sprite_details = get_existing_sprite_details(
            sprite_dirs=sprite_dirs, scale=scale)

        print("\nBUILDING SPRITES: graph_version={} steps={}".format(
            graph_version, graph_step))
        print("   layers={}".format([layer['index'] for layer in layers]))

        for layer in layers:

            layer_name = layer['name']
            layer_index = layer['index']

            adam = layer['adam']
            transform_id = layer['transform_id']

            model = None

            optimizer = tf.train.AdamOptimizer(adam)
            transforms = get_transforms(transform_id)

            #
            existing_layer_sprites = existing_sprite_details[
                layer_index] if layer_index in existing_sprite_details else []

            try:
                print("\nLAYER: {}\n".format(layer))

                num_processed = 0

                for index in range(0, max_index):

                    # check for abort in vis files
                    vf_abort = check_abort(dirs=[
                        os.path.join(graph_version_path, vis_filename),
                        os.path.join(graph_step_dir, vis_filename)
                    ])

                    if len(vf_abort) > 0:
                        print("\nDetected abort in vis files: {}".format(
                            vf_abort))
                        return

                    # check any target indexes
                    if not (target_indexes is None or len(target_indexes) == 0
                            or index in target_indexes):
                        continue

                    #
                    existing_index_sprite_thresholds = existing_layer_sprites[
                        index] if index in existing_layer_sprites else []

                    # calculate work to do
                    # do all thresholds already existing
                    thresholds_to_generate = [
                        t for t in thresholds
                        if t not in existing_index_sprite_thresholds
                    ]

                    if len(thresholds_to_generate) == 0:
                        continue

                    # can start from an existing threshold
                    max_existing_threshold = max(
                        existing_index_sprite_thresholds
                    ) if len(existing_index_sprite_thresholds) > 0 else None

                    if max_existing_threshold is not None and max_existing_threshold <= min(
                            thresholds_to_generate):

                        threshold_start = max_existing_threshold + 1

                        img_path = [
                            ip for ip in [
                                get_image_path(sd, layer_index, index,
                                               max_existing_threshold, scale)
                                for sd in sprite_dirs
                            ] if os.path.isfile(ip)
                        ][0]

                        with Image.open(img_path) as im:
                            im.load()

                            # make array
                            im_1 = np.array(im)

                        # add dummy batch dimension
                        im_2 = np.expand_dims(im_1, axis=0)

                        # reduce less than one
                        init_val = im_2.astype(np.float32) / 256

                        param_f = lambda: lucid_images.image(
                            scale, fft=False, init_val=init_val)

                    elif use_cppn:
                        threshold_start = 0
                        adam = 0.00055
                        optimizer = tf.train.AdamOptimizer(adam)
                        param_f = lambda: param.cppn(scale)

                    else:
                        threshold_start = 0
                        param_f = lambda: param.image(
                            scale, fft=True, decorrelate=True)

                    # drop the model regularly
                    if num_processed % 100 == 0:
                        print("Reloading model ...")
                        model = None
                        num_processed = 0

                    if model is None:
                        model = model_loader(graph_step)
                        model.load_graphdef()

                    # start the feature
                    print("\nFEATURE: {}:{}\n".format(layer['name'], index))

                    log_item = {
                        "batch_id": batch_id,
                        "timestamp": current_milli_time(),
                        "scale": scale,
                        "adam": adam,
                        "transforms": transform_id,
                        "layer": layer_index,
                        "index": index
                    }

                    visualizations = []

                    try:
                        visualization = get_visualizations_and_losses(
                            model,
                            objectives.channel(layer_name, index),
                            transforms=transforms,
                            param_f=param_f,
                            optimizer=optimizer,
                            threshold_start=threshold_start,
                            thresholds=thresholds,
                            visualization_index=index,
                            visualization_layer=layer_index,
                            minimum_loss=vis_loss['minimum_loss_threshold']
                            if 'minimum_loss_threshold' in vis_loss else 0,
                            num_bins=vis_loss['num_bins']
                            if 'num_bins' in vis_loss else 0,
                            max_bin_hits=vis_loss['max_bin_hits']
                            if 'max_bin_hits' in vis_loss else 0,
                            bin_factor=vis_loss['bin_factor']
                            if 'bin_factor' in vis_loss else 0,
                            loss_logger=lambda l, t, s: loss_logger(
                                log_file=log_path,
                                item=log_item,
                                threshold=t,
                                loss=l,
                                status=s))

                        num_processed = num_processed + 1

                        if len(visualization) == 0:
                            continue

                        # check losses
                        losses = [v[2] for v in visualization]

                        print("\nLOSSES: feature={}:{}; {}\n".format(
                            layer_index, index, losses))

                        visualizations.append(visualization)

                    finally:
                        if len(visualizations) > 0:
                            store_visualizations_and_losses(
                                visualizations,
                                output_dir=image_dir,
                                scale=scale)

            except ValueError as e:
                msg = "{}".format(e)
                if 'slice index' in msg and 'out of bounds' in msg:
                    print(
                        "Closing layer: slice index out of bounds: {}".format(
                            e))
                else:
                    raise e