def test_datetime_split(df_engine): nrows = 100 npartitions = 10 df = pd.DataFrame(np.random.randint(0, 100, size=(nrows, 3)), columns=["A", "B", "C"]) def random_date(*args, **kwargs): start = datetime.strptime("1/1/1990 1:30 PM", "%m/%d/%Y %I:%M %p") end = datetime.strptime("1/1/2022 4:50 AM", "%m/%d/%Y %I:%M %p") delta = end - start int_delta = (delta.days * 24 * 60 * 60) + delta.seconds random_second = randrange(int_delta) return str(start + timedelta(seconds=random_second)) df["date_col"] = df["C"].map(random_date) if isinstance(df_engine, DaskEngine): df = df_engine.df_lib.from_pandas(df, npartitions=npartitions) probs = (0.7, 0.1, 0.2) split_params = { "type": "datetime", "column": "date_col", "probabilities": probs, } splitter = get_splitter(**split_params) backend = Mock() backend.df_engine = df_engine splits = splitter.split(df, backend) assert len(splits) == 3 min_datestr = "1990-01-01 00:00:00" for split, p in zip(splits, probs): if isinstance(df_engine, DaskEngine): # Dask splitting is not exact, so apply soft constraint here split = split.compute() assert np.isclose(len(split), int(nrows * p), atol=15) else: assert len(split) == int(nrows * p) assert np.all(split["date_col"] > min_datestr) min_datestr = split["date_col"].max()
def test_stratify_split(): nrows = 100 thresholds = [60, 80, 100] df = pd.DataFrame(np.random.randint(0, 100, size=(nrows, 3)), columns=["A", "B", "C"]) def get_category(v): if v < thresholds[0]: return 0 if thresholds[0] <= v < thresholds[1]: return 1 return 2 df["category"] = df.index.map(get_category).astype(np.int8) probs = (0.7, 0.1, 0.2) split_params = { "type": "stratify", "column": "category", "probabilities": probs, } splitter = get_splitter(**split_params) backend = Mock() backend.df_engine = PandasEngine() splits = splitter.split(df, backend, random_seed=42) assert len(splits) == 3 ratios = [60, 20, 20] for split, p in zip(splits, probs): for idx, r in enumerate(ratios): actual = np.sum(split["category"] == idx) expected = int(r * p) assert np.isclose(actual, expected, atol=1) # Test determinism splits2 = splitter.split(df, backend, random_seed=7) for s1, s2 in zip(splits, splits2): assert not s1.equals(s2) splits3 = splitter.split(df, backend, random_seed=42) for s1, s3 in zip(splits, splits3): assert s1.equals(s3)
def test_random_split(df_engine): nrows = 100 npartitions = 10 df = pd.DataFrame(np.random.randint(0, 100, size=(nrows, 3)), columns=["A", "B", "C"]) if isinstance(df_engine, DaskEngine): df = df_engine.df_lib.from_pandas(df, npartitions=npartitions) probs = (0.7, 0.1, 0.2) split_params = { "type": "random", "probabilities": probs, } splitter = get_splitter(**split_params) backend = Mock() backend.df_engine = df_engine splits = splitter.split(df, backend, random_seed=42) assert len(splits) == 3 for split, p in zip(splits, probs): if isinstance(df_engine, DaskEngine): # Dask splitting is not exact, so apply soft constraint here assert np.isclose(len(split), int(nrows * p), atol=5) else: assert len(split) == int(nrows * p) # Test determinism def compute(dfs): return [ df.compute() if isinstance(backend.df_engine, DaskEngine) else df for df in dfs ] splits = compute(splits) splits2 = compute(splitter.split(df, backend, random_seed=7)) for s1, s2 in zip(splits, splits2): assert not s1.equals(s2) splits3 = compute(splitter.split(df, backend, random_seed=42)) for s1, s3 in zip(splits, splits3): assert s1.equals(s3)
def test_fixed_split(df_engine): nrows = 100 npartitions = 10 thresholds = [60, 80, 100] df = pd.DataFrame(np.random.randint(0, 100, size=(nrows, 3)), columns=["A", "B", "C"]) def get_split(v): if v < thresholds[0]: return 0 if thresholds[0] <= v < thresholds[1]: return 1 return 2 df["split_col"] = df["C"].map(get_split).astype(np.int8) if isinstance(df_engine, DaskEngine): df = df_engine.df_lib.from_pandas(df, npartitions=npartitions) split_params = { "type": "fixed", "column": "split_col", } splitter = get_splitter(**split_params) backend = Mock() backend.df_engine = df_engine splits = splitter.split(df, backend) assert len(splits) == 3 last_t = 0 for split, t in zip(splits, thresholds): if isinstance(df_engine, DaskEngine): split = split.compute() assert np.all(split["C"] < t) assert np.all(split["C"] >= last_t) last_t = t
def test_model_save_reload_api(tmpdir, csv_filename, tmp_path): torch.manual_seed(1) random.seed(1) np.random.seed(1) image_dest_folder = os.path.join(os.getcwd(), "generated_images") audio_dest_folder = os.path.join(os.getcwd(), "generated_audio") input_features = [ binary_feature(), number_feature(), category_feature(vocab_size=3), sequence_feature(vocab_size=3), text_feature(vocab_size=3, encoder="rnn", cell_type="lstm", num_layers=2, bidirections=True), vector_feature(), image_feature(image_dest_folder), audio_feature(audio_dest_folder, encoder="stacked_cnn"), timeseries_feature(encoder="parallel_cnn"), sequence_feature(vocab_size=3, encoder="stacked_parallel_cnn"), date_feature(), h3_feature(), set_feature(vocab_size=3), bag_feature(vocab_size=3), ] output_features = [ binary_feature(), number_feature(), category_feature(vocab_size=3), sequence_feature(vocab_size=3), text_feature(vocab_size=3), set_feature(vocab_size=3), vector_feature(), ] # Generate test data data_csv_path = generate_data(input_features, output_features, csv_filename, num_examples=50) ############# # Train model ############# config = { "input_features": input_features, "output_features": output_features, TRAINER: { "epochs": 2 } } data_df = read_csv(data_csv_path) splitter = get_splitter("random") training_set, validation_set, test_set = splitter.split( data_df, LocalTestBackend()) # create sub-directory to store results results_dir = tmp_path / "results" results_dir.mkdir() # perform initial model training backend = LocalTestBackend() ludwig_model1 = LudwigModel(config, backend=backend) _, _, output_dir = ludwig_model1.train( training_set=training_set, validation_set=validation_set, test_set=test_set, output_directory="results", # results_dir ) preds_1, _ = ludwig_model1.predict(dataset=validation_set) def check_model_equal(ludwig_model2): # Compare model predictions preds_2, _ = ludwig_model2.predict(dataset=validation_set) assert set(preds_1.keys()) == set(preds_2.keys()) for key in preds_1: assert preds_1[key].dtype == preds_2[key].dtype, key assert np.all(a == b for a, b in zip(preds_1[key], preds_2[key])), key # assert preds_2[key].dtype == preds_3[key].dtype, key # assert list(preds_2[key]) == list(preds_3[key]), key # Compare model weights for if_name in ludwig_model1.model.input_features: if1 = ludwig_model1.model.input_features[if_name] if2 = ludwig_model2.model.input_features[if_name] for if1_w, if2_w in zip(if1.encoder_obj.parameters(), if2.encoder_obj.parameters()): assert torch.allclose(if1_w, if2_w) c1 = ludwig_model1.model.combiner c2 = ludwig_model2.model.combiner for c1_w, c2_w in zip(c1.parameters(), c2.parameters()): assert torch.allclose(c1_w, c2_w) for of_name in ludwig_model1.model.output_features: of1 = ludwig_model1.model.output_features[of_name] of2 = ludwig_model2.model.output_features[of_name] for of1_w, of2_w in zip(of1.decoder_obj.parameters(), of2.decoder_obj.parameters()): assert torch.allclose(of1_w, of2_w) ludwig_model1.save(tmpdir) ludwig_model_loaded = LudwigModel.load(tmpdir, backend=backend) check_model_equal(ludwig_model_loaded) # Test loading the model from the experiment directory ludwig_model_exp = LudwigModel.load(os.path.join(output_dir, "model"), backend=backend) check_model_equal(ludwig_model_exp)
def test_gbm_model_save_reload_api(tmpdir, csv_filename, tmp_path): torch.manual_seed(1) random.seed(1) np.random.seed(1) input_features = [ binary_feature(), number_feature(), category_feature(vocab_size=3) ] output_features = [category_feature(vocab_size=3)] # Generate test data data_csv_path = generate_data(input_features, output_features, csv_filename) ############# # Train tree model ############# config = { "model_type": "gbm", "input_features": input_features, "output_features": output_features, TRAINER: { "num_boost_round": 2 }, } data_df = read_csv(data_csv_path) splitter = get_splitter("random") training_set, validation_set, test_set = splitter.split( data_df, LocalTestBackend()) # create sub-directory to store results results_dir = tmp_path / "results" results_dir.mkdir() # perform initial model training backend = LocalTestBackend() ludwig_model1 = LudwigModel(config, backend=backend) _, _, output_dir = ludwig_model1.train( training_set=training_set, validation_set=validation_set, test_set=test_set, output_directory="results", # results_dir ) preds_1, _ = ludwig_model1.predict(dataset=validation_set) def check_model_equal(ludwig_model2): # Compare model predictions preds_2, _ = ludwig_model2.predict(dataset=validation_set) assert set(preds_1.keys()) == set(preds_2.keys()) for key in preds_1: assert preds_1[key].dtype == preds_2[key].dtype, key assert np.all(a == b for a, b in zip(preds_1[key], preds_2[key])), key # Compare model weights for if_name in ludwig_model1.model.input_features: if1 = ludwig_model1.model.input_features[if_name] if2 = ludwig_model2.model.input_features[if_name] for if1_w, if2_w in zip(if1.encoder_obj.parameters(), if2.encoder_obj.parameters()): assert torch.allclose(if1_w, if2_w) tree1 = ludwig_model1.model.compiled_model tree2 = ludwig_model2.model.compiled_model for t1_w, t2_w in zip(tree1.parameters(), tree2.parameters()): assert torch.allclose(t1_w, t2_w) for of_name in ludwig_model1.model.output_features: of1 = ludwig_model1.model.output_features[of_name] of2 = ludwig_model2.model.output_features[of_name] for of1_w, of2_w in zip(of1.decoder_obj.parameters(), of2.decoder_obj.parameters()): assert torch.allclose(of1_w, of2_w) # Test saving and loading the model explicitly ludwig_model1.save(tmpdir) ludwig_model_loaded = LudwigModel.load(tmpdir, backend=backend) check_model_equal(ludwig_model_loaded) # Test loading the model from the experiment directory ludwig_model_exp = LudwigModel.load(os.path.join(output_dir, "model"), backend=backend) check_model_equal(ludwig_model_exp)
def merge_with_defaults(config: dict) -> dict: # noqa: F821 config = copy.deepcopy(config) upgrade_deprecated_fields(config) _perform_sanity_checks(config) _set_feature_column(config) _set_proc_column(config) _merge_hyperopt_with_trainer(config) # ===== Defaults ===== if DEFAULTS not in config: config[DEFAULTS] = dict() # Update defaults with the default feature specific preprocessing parameters for feature_type, preprocessing_defaults in default_feature_specific_preprocessing_parameters.items(): # Create a new key with feature type if defaults is empty if feature_type not in config.get(DEFAULTS): if PREPROCESSING in preprocessing_defaults: config[DEFAULTS][feature_type] = preprocessing_defaults else: config[DEFAULTS][feature_type] = {PREPROCESSING: preprocessing_defaults} # Feature type exists but preprocessing hasn't be specified elif PREPROCESSING not in config[DEFAULTS][feature_type]: config[DEFAULTS][feature_type][PREPROCESSING] = preprocessing_defaults # Preprocessing parameters exist for feature type, update defaults with parameters from config else: config[DEFAULTS][feature_type][PREPROCESSING].update( merge_dict(preprocessing_defaults, config[DEFAULTS][feature_type][PREPROCESSING]) ) # ===== Preprocessing ===== config[PREPROCESSING] = merge_dict(base_preprocessing_parameters, config.get(PREPROCESSING, {})) splitter = get_splitter(**config[PREPROCESSING].get(SPLIT, {})) splitter.validate(config) # ===== Model Type ===== set_default_value(config, MODEL_TYPE, default_model_type) # ===== Training ===== # Convert config dictionary into an instance of BaseTrainerConfig. full_trainer_config, _ = load_trainer_with_kwargs(config[MODEL_TYPE], config[TRAINER] if TRAINER in config else {}) config[TRAINER] = asdict(full_trainer_config) set_default_value( config[TRAINER], "validation_metric", output_type_registry[config[OUTPUT_FEATURES][0][TYPE]].default_validation_metric, ) # ===== Input Features ===== for input_feature in config[INPUT_FEATURES]: if config[MODEL_TYPE] == MODEL_GBM: input_feature[ENCODER] = "passthrough" remove_ecd_params(input_feature) get_from_registry(input_feature[TYPE], input_type_registry).populate_defaults(input_feature) # Update encoder parameters for output feature from global defaults update_feature_from_defaults(config, input_feature, INPUT_FEATURES) # ===== Combiner ===== set_default_value(config, COMBINER, {TYPE: default_combiner_type}) full_combiner_config, _ = load_config_with_kwargs( combiner_registry[config[COMBINER][TYPE]].get_schema_cls(), config[COMBINER] ) config[COMBINER].update(asdict(full_combiner_config)) # ===== Output features ===== for output_feature in config[OUTPUT_FEATURES]: if config[MODEL_TYPE] == MODEL_GBM: output_feature[DECODER] = "passthrough" remove_ecd_params(output_feature) get_from_registry(output_feature[TYPE], output_type_registry).populate_defaults(output_feature) # By default, drop rows with missing output features set_default_value(output_feature, PREPROCESSING, {}) set_default_value(output_feature[PREPROCESSING], "missing_value_strategy", DROP_ROW) # Update decoder and loss related parameters for output feature from global defaults update_feature_from_defaults(config, output_feature, OUTPUT_FEATURES) # ===== Hyperpot ===== if HYPEROPT in config: set_default_value(config[HYPEROPT][EXECUTOR], TYPE, RAY) return config
def hyperopt( config: Union[str, dict], dataset: Union[str, dict, pd.DataFrame] = None, training_set: Union[str, dict, pd.DataFrame] = None, validation_set: Union[str, dict, pd.DataFrame] = None, test_set: Union[str, dict, pd.DataFrame] = None, training_set_metadata: Union[str, dict] = None, data_format: str = None, experiment_name: str = "hyperopt", model_name: str = "run", resume: Optional[bool] = None, skip_save_training_description: bool = False, skip_save_training_statistics: bool = False, skip_save_model: bool = False, skip_save_progress: bool = False, skip_save_log: bool = False, skip_save_processed_input: bool = True, skip_save_unprocessed_output: bool = False, skip_save_predictions: bool = False, skip_save_eval_stats: bool = False, skip_save_hyperopt_statistics: bool = False, output_directory: str = "results", gpus: Union[str, int, List[int]] = None, gpu_memory_limit: int = None, allow_parallel_threads: bool = True, callbacks: List[Callback] = None, backend: Union[Backend, str] = None, random_seed: int = default_random_seed, hyperopt_log_verbosity: int = 3, **kwargs, ) -> HyperoptResults: """This method performs an hyperparameter optimization. # Inputs :param config: (Union[str, dict]) config which defines the different parameters of the model, features, preprocessing and training. If `str`, filepath to yaml configuration file. :param dataset: (Union[str, dict, pandas.DataFrame], default: `None`) source containing the entire dataset to be used in the experiment. If it has a split column, it will be used for splitting (0 for train, 1 for validation, 2 for test), otherwise the dataset will be randomly split. :param training_set: (Union[str, dict, pandas.DataFrame], default: `None`) source containing training data. :param validation_set: (Union[str, dict, pandas.DataFrame], default: `None`) source containing validation data. :param test_set: (Union[str, dict, pandas.DataFrame], default: `None`) source containing test data. :param training_set_metadata: (Union[str, dict], default: `None`) metadata JSON file or loaded metadata. Intermediate preprocessed structure containing the mappings of the input dataset created the first time an input file is used in the same directory with the same name and a '.meta.json' extension. :param data_format: (str, default: `None`) format to interpret data sources. Will be inferred automatically if not specified. Valid formats are `'auto'`, `'csv'`, `'df'`, `'dict'`, `'excel'`, `'feather'`, `'fwf'`, `'hdf5'` (cache file produced during previous training), `'html'` (file containing a single HTML `<table>`), `'json'`, `'jsonl'`, `'parquet'`, `'pickle'` (pickled Pandas DataFrame), `'sas'`, `'spss'`, `'stata'`, `'tsv'`. :param experiment_name: (str, default: `'experiment'`) name for the experiment. :param model_name: (str, default: `'run'`) name of the model that is being used. :param resume: (bool) If true, continue hyperopt from the state of the previous run in the output directory with the same experiment name. If false, will create new trials, ignoring any previous state, even if they exist in the output_directory. By default, will attempt to resume if there is already an existing experiment with the same name, and will create new trials if not. :param skip_save_training_description: (bool, default: `False`) disables saving the description JSON file. :param skip_save_training_statistics: (bool, default: `False`) disables saving training statistics JSON file. :param skip_save_model: (bool, default: `False`) disables saving model weights and hyperparameters each time the model improves. By default Ludwig saves model weights after each epoch the validation metric improves, but if the model is really big that can be time consuming. If you do not want to keep the weights and just find out what performance a model can get with a set of hyperparameters, use this parameter to skip it, but the model will not be loadable later on and the returned model will have the weights obtained at the end of training, instead of the weights of the epoch with the best validation performance. :param skip_save_progress: (bool, default: `False`) disables saving progress each epoch. By default Ludwig saves weights and stats after each epoch for enabling resuming of training, but if the model is really big that can be time consuming and will uses twice as much space, use this parameter to skip it, but training cannot be resumed later on. :param skip_save_log: (bool, default: `False`) disables saving TensorBoard logs. By default Ludwig saves logs for the TensorBoard, but if it is not needed turning it off can slightly increase the overall speed. :param skip_save_processed_input: (bool, default: `False`) if input dataset is provided it is preprocessed and cached by saving an HDF5 and JSON files to avoid running the preprocessing again. If this parameter is `False`, the HDF5 and JSON file are not saved. :param skip_save_unprocessed_output: (bool, default: `False`) by default predictions and their probabilities are saved in both raw unprocessed numpy files containing tensors and as postprocessed CSV files (one for each output feature). If this parameter is True, only the CSV ones are saved and the numpy ones are skipped. :param skip_save_predictions: (bool, default: `False`) skips saving test predictions CSV files. :param skip_save_eval_stats: (bool, default: `False`) skips saving test statistics JSON file. :param skip_save_hyperopt_statistics: (bool, default: `False`) skips saving hyperopt stats file. :param output_directory: (str, default: `'results'`) the directory that will contain the training statistics, TensorBoard logs, the saved model and the training progress files. :param gpus: (list, default: `None`) list of GPUs that are available for training. :param gpu_memory_limit: (int, default: `None`) maximum memory in MB to allocate per GPU device. :param allow_parallel_threads: (bool, default: `True`) allow TensorFlow to use multithreading parallelism to improve performance at the cost of determinism. :param callbacks: (list, default: `None`) a list of `ludwig.callbacks.Callback` objects that provide hooks into the Ludwig pipeline. :param backend: (Union[Backend, str]) `Backend` or string name of backend to use to execute preprocessing / training steps. :param random_seed: (int: default: 42) random seed used for weights initialization, splits and any other random function. :param hyperopt_log_verbosity: (int: default: 3) controls verbosity of ray tune log messages. Valid values: 0 = silent, 1 = only status updates, 2 = status and brief trial results, 3 = status and detailed trial results. # Return :return: (List[dict]) List of results for each trial, ordered by descending performance on the target metric. """ from ludwig.hyperopt.execution import get_build_hyperopt_executor, RayTuneExecutor # check if config is a path or a dict if isinstance(config, str): # assume path with open_file(config, "r") as def_file: config_dict = yaml.safe_load(def_file) else: config_dict = config # Get mapping of input/output features that don't have an encoder for shared parameters features_eligible_for_shared_params = { INPUT_FEATURES: get_features_eligible_for_shared_params(config_dict, INPUT_FEATURES), OUTPUT_FEATURES: get_features_eligible_for_shared_params(config_dict, OUTPUT_FEATURES), } # merge config with defaults config = merge_with_defaults(config_dict) if HYPEROPT not in config: raise ValueError("Hyperopt Section not present in config") hyperopt_config = config[HYPEROPT] update_hyperopt_params_with_defaults(hyperopt_config) # print hyperopt config logging.info("Hyperopt config") logging.info(pformat(hyperopt_config, indent=4)) logging.info("\n") logging.info( "Features that may be updated in hyperopt trials if default parameters are specified in the search space" ) logging.info(pformat(dict(features_eligible_for_shared_params), indent=4)) logging.info("\n") search_alg = hyperopt_config["search_alg"] executor = hyperopt_config[EXECUTOR] parameters = hyperopt_config["parameters"] split = hyperopt_config["split"] output_feature = hyperopt_config["output_feature"] metric = hyperopt_config["metric"] goal = hyperopt_config["goal"] ###################### # check validity of output_feature / metric/ split combination ###################### splitter = get_splitter(**config[PREPROCESSING]["split"]) if split == TRAINING: if training_set is None and not splitter.has_split(0): raise ValueError( 'The data for the specified split for hyperopt "{}" ' "was not provided, " "or the split amount specified in the preprocessing section " "of the config is not greater than 0".format(split)) elif split == VALIDATION: if validation_set is None and not splitter.has_split(1): raise ValueError( 'The data for the specified split for hyperopt "{}" ' "was not provided, " "or the split amount specified in the preprocessing section " "of the config is not greater than 0".format(split)) elif split == TEST: if test_set is None and not splitter.has_split(2): raise ValueError( 'The data for the specified split for hyperopt "{}" ' "was not provided, " "or the split amount specified in the preprocessing section " "of the config is not greater than 0".format(split)) else: raise ValueError('unrecognized hyperopt split "{}". ' "Please provide one of: {}".format( split, {TRAINING, VALIDATION, TEST})) if output_feature == COMBINED: if metric != LOSS: raise ValueError( 'The only valid metric for "combined" output feature is "loss"' ) else: output_feature_names = {of[NAME] for of in config[OUTPUT_FEATURES]} if output_feature not in output_feature_names: raise ValueError('The output feature specified for hyperopt "{}" ' "cannot be found in the config. " 'Available ones are: {} and "combined"'.format( output_feature, output_feature_names)) output_feature_type = None for of in config[OUTPUT_FEATURES]: if of[NAME] == output_feature: output_feature_type = of[TYPE] feature_class = get_from_registry(output_feature_type, output_type_registry) if metric not in feature_class.metric_functions: # todo v0.4: allow users to specify also metrics from the overall # and per class metrics from the trainign stats and in general # and potprocessed metric raise ValueError( 'The specified metric for hyperopt "{}" is not a valid metric ' 'for the specified output feature "{}" of type "{}". ' "Available metrics are: {}".format( metric, output_feature, output_feature_type, feature_class.metric_functions.keys())) hyperopt_executor = get_build_hyperopt_executor(executor[TYPE])( parameters, output_feature, metric, goal, split, search_alg=search_alg, **executor) # Explicitly default to a local backend to avoid picking up Ray or Horovod # backend from the environment. backend = backend or config_dict.get("backend") or "local" backend = initialize_backend(backend) if not (isinstance(backend, LocalBackend) or (isinstance(hyperopt_executor, RayTuneExecutor) and isinstance(backend, RayBackend))): raise ValueError( "Hyperopt requires using a `local` backend at this time, or " "`ray` backend with `ray` executor.") for callback in callbacks or []: callback.on_hyperopt_init(experiment_name) if not should_tune_preprocessing(config): # preprocessing is not being tuned, so generate it once before starting trials for callback in callbacks or []: callback.on_hyperopt_preprocessing_start(experiment_name) model = LudwigModel( config=config, backend=backend, gpus=gpus, gpu_memory_limit=gpu_memory_limit, allow_parallel_threads=allow_parallel_threads, callbacks=callbacks, ) training_set, validation_set, test_set, training_set_metadata = model.preprocess( dataset=dataset, training_set=training_set, validation_set=validation_set, test_set=test_set, training_set_metadata=training_set_metadata, data_format=data_format, skip_save_processed_input=skip_save_processed_input, random_seed=random_seed, ) dataset = None for callback in callbacks or []: callback.on_hyperopt_preprocessing_end(experiment_name) for callback in callbacks or []: callback.on_hyperopt_start(experiment_name) hyperopt_results = hyperopt_executor.execute( config, dataset=dataset, training_set=training_set, validation_set=validation_set, test_set=test_set, training_set_metadata=training_set_metadata, data_format=data_format, experiment_name=experiment_name, model_name=model_name, resume=resume, skip_save_training_description=skip_save_training_description, skip_save_training_statistics=skip_save_training_statistics, skip_save_model=skip_save_model, skip_save_progress=skip_save_progress, skip_save_log=skip_save_log, skip_save_processed_input=skip_save_processed_input, skip_save_unprocessed_output=skip_save_unprocessed_output, skip_save_predictions=skip_save_predictions, skip_save_eval_stats=skip_save_eval_stats, output_directory=output_directory, gpus=gpus, gpu_memory_limit=gpu_memory_limit, allow_parallel_threads=allow_parallel_threads, callbacks=callbacks, backend=backend, random_seed=random_seed, hyperopt_log_verbosity=hyperopt_log_verbosity, features_eligible_for_shared_params=features_eligible_for_shared_params, **kwargs, ) if backend.is_coordinator(): print_hyperopt_results(hyperopt_results) if not skip_save_hyperopt_statistics: results_directory = os.path.join(output_directory, experiment_name) makedirs(results_directory, exist_ok=True) hyperopt_stats = { "hyperopt_config": hyperopt_config, "hyperopt_results": [t.to_dict() for t in hyperopt_results.ordered_trials], } save_hyperopt_stats(hyperopt_stats, results_directory) logging.info(f"Hyperopt stats saved to: {results_directory}") for callback in callbacks or []: callback.on_hyperopt_end(experiment_name) callback.on_hyperopt_finish(experiment_name) logging.info("Finished hyperopt") return hyperopt_results