def _save_as_numpy(predictions, output_directory, saved_keys): predictions = predictions[[c for c in predictions.columns if c not in saved_keys]] npy_filename = os.path.join(output_directory, "{}.npy") numpy_predictions = to_numpy_dataset(predictions) for k, v in numpy_predictions.items(): if k not in saved_keys: k = k.replace("<", "[").replace(">", "]") # Replace <UNK> and <PAD> np.save(npy_filename.format(k), v) saved_keys.add(k)
def _save_as_numpy(predictions, output_directory, saved_keys): predictions = predictions[[ c for c in predictions.columns if c not in saved_keys ]] npy_filename = os.path.join(output_directory, '{}.npy') numpy_predictions = to_numpy_dataset(predictions) for k, v in numpy_predictions.items(): if k not in saved_keys: np.save(npy_filename.format(k), v) saved_keys.add(k)
def __init__(self, dataset, features, data_hdf5_fp): self.features = features self.data_hdf5_fp = data_hdf5_fp self.size = len(dataset) self.dataset = to_numpy_dataset(dataset)