def _get_spectra(self): #- Setup data for a Resolution matrix sigma = 4.0 ndiag = 21 xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag) Rdata = np.zeros((self.nspec, ndiag, self.nwave)) for i in range(self.nspec): for j in range(self.nwave): kernel = np.exp(-xx**2 / (2 * sigma)) kernel /= sum(kernel) Rdata[i, :, j] = kernel flux = np.zeros((self.nspec, self.nwave)) ivar = np.ones((self.nspec, self.nwave)) mask = np.zeros((self.nspec, self.nwave), dtype=int) for i in range(self.nspec): R = Resolution(Rdata[i]) flux[i] = R.dot(self.flux) fibermap = lvmspec.io.empty_fibermap(self.nspec, 1500) fibermap['OBJTYPE'][0::2] = 'SKY' return Frame(self.wave, flux, ivar, mask, Rdata, spectrograph=2, fibermap=fibermap)
def get_frame_data(nspec=10, objtype=None): """ Return basic test data for lvmspec.frame object: """ nwave = 100 wavemin, wavemax = 4000, 4100 wave, model_flux = get_models(nspec, nwave, wavemin=wavemin, wavemax=wavemax) resol_data = set_resolmatrix(nspec, nwave) calib = np.sin((wave - wavemin) * np.pi / np.max(wave)) flux = np.zeros((nspec, nwave)) for i in range(nspec): flux[i] = Resolution(resol_data[i]).dot(model_flux[i] * calib) sigma = 0.01 # flux += np.random.normal(scale=sigma, size=flux.shape) ivar = np.ones(flux.shape) / sigma**2 mask = np.zeros(flux.shape, dtype=int) fibermap = empty_fibermap(nspec, 1500) if objtype is None: fibermap['OBJTYPE'] = 'QSO' fibermap['OBJTYPE'][0:3] = 'STD' # For flux tests else: fibermap['OBJTYPE'] = objtype frame = Frame(wave, flux, ivar, mask, resol_data, fibermap=fibermap) frame.meta = {} frame.meta['EXPTIME'] = 1. # For flux tests return frame
def test_resolution(self): """ Test that identical spectra convolved with different resolutions results in identical fiberflats """ wave, flux, ivar, mask = _get_data() nspec, nwave = flux.shape #- Setup a Resolution matrix that varies with fiber and wavelength #- Note: this is actually the transpose of the resolution matrix #- I wish I was creating, but as long as we self-consistently #- use it for convolving and solving, that shouldn't matter. sigma = np.linspace(2, 10, nwave * nspec) ndiag = 21 xx = np.linspace(-ndiag / 2.0, +ndiag / 2.0, ndiag) Rdata = np.zeros((nspec, len(xx), nwave)) for i in range(nspec): for j in range(nwave): kernel = np.exp(-xx**2 / (2 * sigma[i * nwave + j]**2)) kernel /= sum(kernel) Rdata[i, :, j] = kernel #- Convolve the data with the resolution matrix convflux = np.empty_like(flux) for i in range(nspec): convflux[i] = Resolution(Rdata[i]).dot(flux[i]) #- Run the code frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0) ff = compute_fiberflat(frame) #- These fiber flats should all be ~1 self.assertTrue(np.all(np.abs(ff.fiberflat - 1) < 0.001))
def _getdata(self, n=10): wave = np.linspace(5000, 5100, n) flux = np.random.uniform(0, 1, size=n) ivar = np.random.uniform(0, 1, size=n) ### mask = np.random.randint(0, 256, size=n) rdat = np.ones((3, n)) rdat[0] *= 0.25 rdat[1] *= 0.5 rdat[2] *= 0.25 R = Resolution(rdat) ### return wave, flux, ivar, mask, R return wave, flux, ivar, None, R
def test_throughput_resolution(self): """ Test that spectra with different throughputs and different resolutions result in fiberflat variations that are only due to throughput. """ wave, flux, ivar, mask = _get_data() nspec, nwave = flux.shape #- Setup a Resolution matrix that varies with fiber and wavelength #- Note: this is actually the transpose of the resolution matrix #- I wish I was creating, but as long as we self-consistently #- use it for convolving and solving, that shouldn't matter. sigma = np.linspace(2, 10, nwave * nspec) ndiag = 21 xx = np.linspace(-ndiag / 2.0, +ndiag / 2.0, ndiag) Rdata = np.zeros((nspec, len(xx), nwave)) for i in range(nspec): for j in range(nwave): kernel = np.exp(-xx**2 / (2 * sigma[i * nwave + j]**2)) kernel /= sum(kernel) Rdata[i, :, j] = kernel #- Vary the input flux prior to calculating the fiber flat flux[1] *= 1.1 flux[2] *= 1.2 flux[3] /= 1.1 flux[4] /= 1.2 #- Convolve the data with the varying resolution matrix convflux = np.empty_like(flux) for i in range(nspec): convflux[i] = Resolution(Rdata[i]).dot(flux[i]) #- Run the code frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0) #- Set an accuracy for this accuracy = 1.e-9 ff = compute_fiberflat(frame, accuracy=accuracy) #- Compare variation with middle fiber mid = ff.fiberflat.shape[0] // 2 diff = (ff.fiberflat[1] / 1.1 - ff.fiberflat[mid]) self.assertLess(np.max(np.abs(diff)), accuracy) diff = (ff.fiberflat[2] / 1.2 - ff.fiberflat[mid]) self.assertLess(np.max(np.abs(diff)), accuracy) diff = (ff.fiberflat[3] * 1.1 - ff.fiberflat[mid]) self.assertLess(np.max(np.abs(diff)), accuracy) diff = (ff.fiberflat[4] * 1.2 - ff.fiberflat[mid]) self.assertLess(np.max(np.abs(diff)), accuracy)
def test_errors(self): #- Bad shaped input data = np.random.uniform(size=(10,5)) with self.assertRaises(ValueError): R = Resolution(data) #- Meaningless type for input with self.assertRaises(ValueError): R = Resolution('blat') #- Non-uniform x spacing with self.assertRaises(ValueError): R = lvmspec.resolution._gauss_pix([-1,0,2]) #- missing offsets with self.assertRaises(ValueError): lvmspec.resolution._sort_and_symmeterize(data, [-2,-1,0,1,3]) #- length of offsets too large or small with self.assertRaises(ValueError): Resolution(data, offsets=[1,2]) with self.assertRaises(ValueError): Resolution(data, offsets=np.arange(10*lvmspec.resolution.default_ndiag))
def test_main(self): """ Test the main program. """ # generate the frame data wave, flux, ivar, mask = _get_data() nspec, nwave = flux.shape #- Setup data for a Resolution matrix sigma = 4.0 ndiag = 11 xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag) Rdata = np.zeros((nspec, ndiag, nwave)) kernel = np.exp(-xx**2 / (2 * sigma)) kernel /= sum(kernel) for i in range(nspec): for j in range(nwave): Rdata[i, :, j] = kernel #- Convolve the data with the resolution matrix convflux = np.empty_like(flux) for i in range(nspec): convflux[i] = Resolution(Rdata[i]).dot(flux[i]) # create a fake fibermap fibermap = io.empty_fibermap(nspec, nwave) for i in range(0, nspec): fibermap['OBJTYPE'][i] = 'FAKE' io.write_fibermap(self.testfibermap, fibermap) #- write out the frame frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0, fibermap=fibermap, meta=dict(FLAVOR='flat')) write_frame(self.testframe, frame, fibermap=fibermap) # set program arguments argstr = ['--infile', self.testframe, '--outfile', self.testflat] # run it args = ffscript.parse(options=argstr) ffscript.main(args)
def test_throughput(self): """ Test that spectra with different throughputs but the same resolution produce a fiberflat mirroring the variations in throughput """ wave, flux, ivar, mask = _get_data() nspec, nwave = flux.shape #- Setup data for a Resolution matrix sigma = 4.0 ndiag = 21 xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag) Rdata = np.zeros((nspec, ndiag, nwave)) kernel = np.exp(-xx**2 / (2 * sigma)) kernel /= sum(kernel) for i in range(nspec): for j in range(nwave): Rdata[i, :, j] = kernel #- Vary the input flux prior to calculating the fiber flat flux[1] *= 1.1 flux[2] *= 1.2 flux[3] *= 0.8 #- Convolve with the (common) resolution matrix convflux = np.empty_like(flux) for i in range(nspec): convflux[i] = Resolution(Rdata[i]).dot(flux[i]) frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0) ff = compute_fiberflat(frame) #- flux[1] is brighter, so should fiberflat[1]. etc. self.assertTrue(np.allclose(ff.fiberflat[0], ff.fiberflat[1] / 1.1)) self.assertTrue(np.allclose(ff.fiberflat[0], ff.fiberflat[2] / 1.2)) self.assertTrue(np.allclose(ff.fiberflat[0], ff.fiberflat[3] / 0.8))
def sim_spectra(wave, flux, program, spectra_filename, obsconditions=None, sourcetype=None, expid=0, seed=0): """ Simulate spectra from an input set of wavelength and flux and writes a FITS file in the Spectra format that can be used as input to the redshift fitter. Args: wave : 1D np.array of wavelength in Angstrom (in vacuum) in observer frame (i.e. redshifted) flux : 1D or 2D np.array. 1D array must have same size as wave, 2D array must have shape[1]=wave.size flux has to be in units of 10^-17 ergs/s/cm2/A spectra_filename : path to output FITS file in the Spectra format Optional: obsconditions : dictionnary of observation conditions with SEEING EXPTIME AIRMASS MOONFRAC MOONALT MOONSEP sourcetype : list of string, allowed values are (sky,elg,lrg,qso,bgs,star), type of sources, used for fiber aperture loss , default is star expid : this expid number will be saved in the Spectra fibermap seed : random seed """ log = get_logger() if len(flux.shape) == 1: flux = flux.reshape((1, flux.size)) nspec = flux.shape[0] log.info("Starting simulation of {} spectra".format(nspec)) if sourcetype is None: sourcetype = np.array(["star" for i in range(nspec)]) log.debug("sourcetype = {}".format(sourcetype)) tileid = 0 telera = 0 teledec = 0 dateobs = time.gmtime() night = lvmsim.obs.get_night(utc=dateobs) program = program.lower() frame_fibermap = lvmspec.io.fibermap.empty_fibermap(nspec) frame_fibermap.meta["FLAVOR"] = "custom" frame_fibermap.meta["NIGHT"] = night frame_fibermap.meta["EXPID"] = expid # add LVM_TARGET tm = lvmtarget.desi_mask frame_fibermap['LVM_TARGET'][sourcetype == "star"] = tm.STD_FSTAR frame_fibermap['LVM_TARGET'][sourcetype == "lrg"] = tm.LRG frame_fibermap['LVM_TARGET'][sourcetype == "elg"] = tm.ELG frame_fibermap['LVM_TARGET'][sourcetype == "qso"] = tm.QSO frame_fibermap['LVM_TARGET'][sourcetype == "sky"] = tm.SKY frame_fibermap['LVM_TARGET'][sourcetype == "bgs"] = tm.BGS_ANY # add dummy TARGETID frame_fibermap['TARGETID'] = np.arange(nspec).astype(int) # spectra fibermap has two extra fields : night and expid # This would be cleaner if lvmspec would provide the spectra equivalent # of lvmspec.io.empty_fibermap() spectra_fibermap = lvmspec.io.empty_fibermap(nspec) spectra_fibermap = lvmspec.io.util.add_columns( spectra_fibermap, ['NIGHT', 'EXPID', 'TILEID'], [np.int32(night), np.int32(expid), np.int32(tileid)], ) for s in range(nspec): for tp in frame_fibermap.dtype.fields: spectra_fibermap[s][tp] = frame_fibermap[s][tp] if obsconditions is None: if program in ['dark', 'lrg', 'qso']: obsconditions = lvmsim.simexp.reference_conditions['DARK'] elif program in ['elg', 'gray', 'grey']: obsconditions = lvmsim.simexp.reference_conditions['GRAY'] elif program in ['mws', 'bgs', 'bright']: obsconditions = lvmsim.simexp.reference_conditions['BRIGHT'] else: raise ValueError('unknown program {}'.format(program)) elif isinstance(obsconditions, str): try: obsconditions = lvmsim.simexp.reference_conditions[ obsconditions.upper()] except KeyError: raise ValueError('obsconditions {} not in {}'.format( obsconditions.upper(), list(lvmsim.simexp.reference_conditions.keys()))) try: params = lvmmodel.io.load_desiparams() wavemin = params['ccd']['b']['wavemin'] wavemax = params['ccd']['z']['wavemax'] except KeyError: wavemin = lvmmodel.io.load_throughput('b').wavemin wavemax = lvmmodel.io.load_throughput('z').wavemax if wave[0] > wavemin: log.warning( 'Minimum input wavelength {}>{}; padding with zeros'.format( wave[0], wavemin)) dwave = wave[1] - wave[0] npad = int((wave[0] - wavemin) / dwave + 1) wavepad = np.arange(npad) * dwave wavepad += wave[0] - dwave - wavepad[-1] fluxpad = np.zeros((flux.shape[0], len(wavepad)), dtype=flux.dtype) wave = np.concatenate([wavepad, wave]) flux = np.hstack([fluxpad, flux]) assert flux.shape[1] == len(wave) assert np.allclose(dwave, np.diff(wave)) assert wave[0] <= wavemin if wave[-1] < wavemax: log.warning( 'Maximum input wavelength {}<{}; padding with zeros'.format( wave[-1], wavemax)) dwave = wave[-1] - wave[-2] npad = int((wavemax - wave[-1]) / dwave + 1) wavepad = wave[-1] + dwave + np.arange(npad) * dwave fluxpad = np.zeros((flux.shape[0], len(wavepad)), dtype=flux.dtype) wave = np.concatenate([wave, wavepad]) flux = np.hstack([flux, fluxpad]) assert flux.shape[1] == len(wave) assert np.allclose(dwave, np.diff(wave)) assert wavemax <= wave[-1] ii = (wavemin <= wave) & (wave <= wavemax) flux_unit = 1e-17 * u.erg / (u.Angstrom * u.s * u.cm**2) wave = wave[ii] * u.Angstrom flux = flux[:, ii] * flux_unit sim = lvmsim.simexp.simulate_spectra(wave, flux, fibermap=frame_fibermap, obsconditions=obsconditions, seed=seed) random_state = np.random.RandomState(seed) sim.generate_random_noise(random_state) scale = 1e17 specdata = None resolution = {} for camera in sim.instrument.cameras: R = Resolution(camera.get_output_resolution_matrix()) resolution[camera.name] = np.tile(R.to_fits_array(), [nspec, 1, 1]) for table in sim.camera_output: wave = table['wavelength'].astype(float) flux = (table['observed_flux'] + table['random_noise_electrons'] * table['flux_calibration']).T.astype(float) ivar = table['flux_inverse_variance'].T.astype(float) band = table.meta['name'].strip()[0] flux = flux * scale ivar = ivar / scale**2 mask = np.zeros(flux.shape).astype(int) spec = Spectra([band], {band: wave}, {band: flux}, {band: ivar}, resolution_data={band: resolution[band]}, mask={band: mask}, fibermap=spectra_fibermap, meta=None, single=True) if specdata is None: specdata = spec else: specdata.update(spec) lvmspec.io.write_spectra(spectra_filename, specdata) log.info('Wrote ' + spectra_filename)
def compute_sky(frame, nsig_clipping=4.,max_iterations=100,model_ivar=False,add_variance=True) : """Compute a sky model. Input has to correspond to sky fibers only. Input flux are expected to be flatfielded! We don't check this in this routine. Args: frame : Frame object, which includes attributes - wave : 1D wavelength grid in Angstroms - flux : 2D flux[nspec, nwave] density - ivar : 2D inverse variance of flux - mask : 2D inverse mask flux (0=good) - resolution_data : 3D[nspec, ndiag, nwave] (only sky fibers) nsig_clipping : [optional] sigma clipping value for outlier rejection Optional: max_iterations : int , number of iterations model_ivar : replace ivar by a model to avoid bias due to correlated flux and ivar. this has a negligible effect on sims. returns SkyModel object with attributes wave, flux, ivar, mask """ log=get_logger() log.info("starting") # Grab sky fibers on this frame skyfibers = np.where(frame.fibermap['OBJTYPE'] == 'SKY')[0] assert np.max(skyfibers) < 500 #- indices, not fiber numbers nwave=frame.nwave nfibers=len(skyfibers) current_ivar=frame.ivar[skyfibers].copy()*(frame.mask[skyfibers]==0) flux = frame.flux[skyfibers] Rsky = frame.R[skyfibers] input_ivar=None if model_ivar : log.info("use a model of the inverse variance to remove bias due to correlated ivar and flux") input_ivar=current_ivar.copy() median_ivar_vs_wave = np.median(current_ivar,axis=0) median_ivar_vs_fiber = np.median(current_ivar,axis=1) median_median_ivar = np.median(median_ivar_vs_fiber) for f in range(current_ivar.shape[0]) : threshold=0.01 current_ivar[f] = median_ivar_vs_fiber[f]/median_median_ivar * median_ivar_vs_wave # keep input ivar for very low weights ii=(input_ivar[f]<=(threshold*median_ivar_vs_wave)) #log.info("fiber {} keep {}/{} original ivars".format(f,np.sum(ii),current_ivar.shape[1])) current_ivar[f][ii] = input_ivar[f][ii] sqrtw=np.sqrt(current_ivar) sqrtwflux=sqrtw*flux chi2=np.zeros(flux.shape) #debug #nfibers=min(nfibers,2) nout_tot=0 for iteration in range(max_iterations) : A=scipy.sparse.lil_matrix((nwave,nwave)).tocsr() B=np.zeros((nwave)) # diagonal sparse matrix with content = sqrt(ivar)*flat of a given fiber SD=scipy.sparse.lil_matrix((nwave,nwave)) # loop on fiber to handle resolution for fiber in range(nfibers) : if fiber%10==0 : log.info("iter %d fiber %d"%(iteration,fiber)) R = Rsky[fiber] # diagonal sparse matrix with content = sqrt(ivar) SD.setdiag(sqrtw[fiber]) sqrtwR = SD*R # each row r of R is multiplied by sqrtw[r] A = A+(sqrtwR.T*sqrtwR).tocsr() B += sqrtwR.T*sqrtwflux[fiber] log.info("iter %d solving"%iteration) w = A.diagonal()>0 A_pos_def = A.todense()[w,:] A_pos_def = A_pos_def[:,w] skyflux = B*0 try: skyflux[w]=cholesky_solve(A_pos_def,B[w]) except: log.info("cholesky failed, trying svd in iteration {}".format(iteration)) skyflux[w]=np.linalg.lstsq(A_pos_def,B[w])[0] log.info("iter %d compute chi2"%iteration) for fiber in range(nfibers) : S = Rsky[fiber].dot(skyflux) chi2[fiber]=current_ivar[fiber]*(flux[fiber]-S)**2 log.info("rejecting") nout_iter=0 if iteration<1 : # only remove worst outlier per wave # apply rejection iteratively, only one entry per wave among fibers # find waves with outlier (fastest way) nout_per_wave=np.sum(chi2>nsig_clipping**2,axis=0) selection=np.where(nout_per_wave>0)[0] for i in selection : worst_entry=np.argmax(chi2[:,i]) current_ivar[worst_entry,i]=0 sqrtw[worst_entry,i]=0 sqrtwflux[worst_entry,i]=0 nout_iter += 1 else : # remove all of them at once bad=(chi2>nsig_clipping**2) current_ivar *= (bad==0) sqrtw *= (bad==0) sqrtwflux *= (bad==0) nout_iter += np.sum(bad) nout_tot += nout_iter sum_chi2=float(np.sum(chi2)) ndf=int(np.sum(chi2>0)-nwave) chi2pdf=0. if ndf>0 : chi2pdf=sum_chi2/ndf log.info("iter #%d chi2=%f ndf=%d chi2pdf=%f nout=%d"%(iteration,sum_chi2,ndf,chi2pdf,nout_iter)) if nout_iter == 0 : break log.info("nout tot=%d"%nout_tot) # no need restore original ivar to compute model error when modeling ivar # the sky inverse variances are very similar # solve once again to get deconvolved sky variance try : unused_skyflux,skycovar=cholesky_solve_and_invert(A.todense(),B) except np.linalg.linalg.LinAlgError : log.warning("cholesky_solve_and_invert failed, switching to np.linalg.lstsq and np.linalg.pinv") #skyflux = np.linalg.lstsq(A.todense(),B)[0] skycovar = np.linalg.pinv(A.todense()) #- sky inverse variance, but incomplete and not needed anyway # skyvar=np.diagonal(skycovar) # skyivar=(skyvar>0)/(skyvar+(skyvar==0)) # Use diagonal of skycovar convolved with mean resolution of all fibers # first compute average resolution mean_res_data=np.mean(frame.resolution_data,axis=0) R = Resolution(mean_res_data) # compute convolved sky and ivar cskycovar=R.dot(skycovar).dot(R.T.todense()) cskyvar=np.diagonal(cskycovar) cskyivar=(cskyvar>0)/(cskyvar+(cskyvar==0)) # convert cskyivar to 2D; today it is the same for all spectra, # but that may not be the case in the future cskyivar = np.tile(cskyivar, frame.nspec).reshape(frame.nspec, nwave) # Convolved sky cskyflux = np.zeros(frame.flux.shape) for i in range(frame.nspec): cskyflux[i] = frame.R[i].dot(skyflux) # look at chi2 per wavelength and increase sky variance to reach chi2/ndf=1 if skyfibers.size > 1 and add_variance : log.info("Add a model error due to wavelength solution noise") tivar = util.combine_ivar(frame.ivar[skyfibers], cskyivar[skyfibers]) # the chi2 at a given wavelength can be large because on a cosmic # and not a psf error or sky non uniformity # so we need to consider only waves for which # a reasonable sky model error can be computed # mean sky msky = np.mean(cskyflux,axis=0) dwave = np.mean(np.gradient(frame.wave)) dskydw = np.zeros(msky.shape) dskydw[1:-1]=(msky[2:]-msky[:-2])/(frame.wave[2:]-frame.wave[:-2]) dskydw = np.abs(dskydw) # now we consider a worst possible sky model error (20% error on flat, 0.5A ) max_possible_var = 1./(tivar+(tivar==0)) + (0.2*msky)**2 + (0.5*dskydw)**2 # exclude residuals inconsistent with this max possible variance (at 3 sigma) bad = (frame.flux[skyfibers]-cskyflux[skyfibers])**2 > 3**2*max_possible_var tivar[bad]=0 ndata = np.sum(tivar>0,axis=0) ok=np.where(ndata>1)[0] print("ok.size=",ok.size) chi2 = np.zeros(frame.wave.size) chi2[ok] = np.sum(tivar*(frame.flux[skyfibers]-cskyflux[skyfibers])**2,axis=0)[ok]/(ndata[ok]-1) chi2[ndata<=1] = 1. # default # now we are going to evaluate a sky model error based on this chi2, # but only around sky flux peaks (>0.1*max) tmp = np.zeros(frame.wave.size) tmp = (msky[1:-1]>msky[2:])*(msky[1:-1]>msky[:-2])*(msky[1:-1]>0.1*np.max(msky)) peaks = np.where(tmp)[0]+1 dpix = int(np.ceil(3/dwave)) # +- n Angstrom around each peak skyvar = 1./(cskyivar+(cskyivar==0)) # loop on peaks for peak in peaks : b=peak-dpix e=peak+dpix+1 mchi2 = np.mean(chi2[b:e]) # mean reduced chi2 around peak mndata = np.mean(ndata[b:e]) # mean number of fibers contributing # sky model variance = sigma_flat * msky + sigma_wave * dmskydw sigma_flat=0.000 # the fiber flat error is already included in the flux ivar sigma_wave=0.005 # A, minimum value res2=(frame.flux[skyfibers,b:e]-cskyflux[skyfibers,b:e])**2 var=1./(tivar[:,b:e]+(tivar[:,b:e]==0)) nd=np.sum(tivar[:,b:e]>0) while(sigma_wave<2) : pivar=1./(var+(sigma_flat*msky[b:e])**2+(sigma_wave*dskydw[b:e])**2) pchi2=np.sum(pivar*res2)/nd if pchi2<=1 : log.info("peak at {}A : sigma_wave={}".format(int(frame.wave[peak]),sigma_wave)) skyvar[:,b:e] += ( (sigma_flat*msky[b:e])**2 + (sigma_wave*dskydw[b:e])**2 ) break sigma_wave += 0.005 modified_cskyivar = (cskyivar>0)/skyvar else : modified_cskyivar = cskyivar.copy() # need to do better here mask = (cskyivar==0).astype(np.uint32) return SkyModel(frame.wave.copy(), cskyflux, modified_cskyivar, mask, nrej=nout_tot, stat_ivar = cskyivar) # keep a record of the statistical ivar for QA
def main(args): # Set up the logger if args.verbose: log = get_logger(DEBUG) else: log = get_logger() # Make sure all necessary environment variables are set setup_envs() # Initialize random number generator to use. np.random.seed(args.seed) random_state = np.random.RandomState(args.seed) # Derive spectrograph number from nstart if needed if args.spectrograph is None: args.spectrograph = args.nstart / args.n_fibers # Read fibermapfile to get object type, night and expid fibermap, objtype, night, expid = get_fibermap(args.fibermap, log=log, nspec=args.nspec) # Initialize the spectral simulator log.info("Initializing SpecSim with config {}".format(args.config)) lvmparams = load_lvmparams(config=args.config, telescope=args.telescope) qsim = get_simulator(args.config, num_fibers=1, params=lvmparams) if args.simspec: # Read the input file log.info('Reading input file {}'.format(args.simspec)) simspec = lvmsim.io.read_simspec(args.simspec) nspec = simspec.nspec if simspec.flavor == 'arc': # - TODO: do we need quickgen to support arcs? For full pipeline # - arcs are used to measure PSF but aren't extracted except for # - debugging. # - TODO: if we do need arcs, this needs to be redone. # - conversion from phot to flux doesn't include throughput, # - and arc lines are rebinned to nearest 0.2 A. # Create full wavelength and flux arrays for arc exposure wave_b = np.array(simspec.wave['b']) wave_r = np.array(simspec.wave['r']) wave_z = np.array(simspec.wave['z']) phot_b = np.array(simspec.phot['b'][0]) phot_r = np.array(simspec.phot['r'][0]) phot_z = np.array(simspec.phot['z'][0]) sim_wave = np.concatenate((wave_b, wave_r, wave_z)) sim_phot = np.concatenate((phot_b, phot_r, phot_z)) wavelengths = np.arange(3533., 9913.1, 0.2) phot = np.zeros(len(wavelengths)) for i in range(len(sim_wave)): wavelength = sim_wave[i] flux_index = np.argmin(abs(wavelength - wavelengths)) phot[flux_index] = sim_phot[i] # Convert photons to flux: following specter conversion method dw = np.gradient(wavelengths) exptime = 5. # typical BOSS exposure time in s fibarea = const.pi * (1.07e-2 / 2)**2 # cross-sectional fiber area in cm^2 hc = 1.e17 * const.h * const.c # convert to erg A spectra = (hc * exptime * fibarea * dw * phot) / wavelengths else: wavelengths = simspec.wave['brz'] spectra = simspec.flux if nspec < args.nspec: log.info("Only {} spectra in input file".format(nspec)) args.nspec = nspec else: # Initialize the output truth table. spectra = [] wavelengths = qsim.source.wavelength_out.to(u.Angstrom).value npix = len(wavelengths) truth = dict() meta = Table() truth['OBJTYPE'] = np.zeros(args.nspec, dtype=(str, 10)) truth['FLUX'] = np.zeros((args.nspec, npix)) truth['WAVE'] = wavelengths jj = list() for thisobj in set(true_objtype): ii = np.where(true_objtype == thisobj)[0] nobj = len(ii) truth['OBJTYPE'][ii] = thisobj log.info('Generating {} template'.format(thisobj)) # Generate the templates if thisobj == 'ELG': elg = lvmsim.templates.ELG(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = elg.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_elg, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'LRG': lrg = lvmsim.templates.LRG(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = lrg.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_lrg, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'QSO': qso = lvmsim.templates.QSO(wave=wavelengths) flux, tmpwave, meta1 = qso.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_qso) elif thisobj == 'BGS': bgs = lvmsim.templates.BGS(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = bgs.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_bgs, rmagrange=args.rmagrange_bgs, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'STD': fstd = lvmsim.templates.FSTD(wave=wavelengths) flux, tmpwave, meta1 = fstd.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'QSO_BAD': # use STAR template no color cuts star = lvmsim.templates.STAR(wave=wavelengths) flux, tmpwave, meta1 = star.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'MWS_STAR' or thisobj == 'MWS': mwsstar = lvmsim.templates.MWS_STAR(wave=wavelengths) flux, tmpwave, meta1 = mwsstar.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'WD': wd = lvmsim.templates.WD(wave=wavelengths) flux, tmpwave, meta1 = wd.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'SKY': flux = np.zeros((nobj, npix)) meta1 = Table(dict(REDSHIFT=np.zeros(nobj, dtype=np.float32))) elif thisobj == 'TEST': flux = np.zeros((args.nspec, npix)) indx = np.where(wave > 5800.0 - 1E-6)[0][0] ref_integrated_flux = 1E-10 ref_cst_flux_density = 1E-17 single_line = (np.arange(args.nspec) % 2 == 0).astype( np.float32) continuum = (np.arange(args.nspec) % 2 == 1).astype(np.float32) for spec in range(args.nspec): flux[spec, indx] = single_line[ spec] * ref_integrated_flux / np.gradient(wavelengths)[ indx] # single line flux[spec] += continuum[ spec] * ref_cst_flux_density # flat continuum meta1 = Table( dict(REDSHIFT=np.zeros(args.nspec, dtype=np.float32), LINE=wave[indx] * np.ones(args.nspec, dtype=np.float32), LINEFLUX=single_line * ref_integrated_flux, CONSTFLUXDENSITY=continuum * ref_cst_flux_density)) else: log.fatal('Unknown object type {}'.format(thisobj)) sys.exit(1) # Pack it in. truth['FLUX'][ii] = flux meta = vstack([meta, meta1]) jj.append(ii.tolist()) # Sanity check on units; templates currently return ergs, not 1e-17 ergs... # assert (thisobj == 'SKY') or (np.max(truth['FLUX']) < 1e-6) # Sort the metadata table. jj = sum(jj, []) meta_new = Table() for k in range(args.nspec): index = int(np.where(np.array(jj) == k)[0]) meta_new = vstack([meta_new, meta[index]]) meta = meta_new # Add TARGETID and the true OBJTYPE to the metadata table. meta.add_column( Column(true_objtype, dtype=(str, 10), name='TRUE_OBJTYPE')) meta.add_column(Column(targetids, name='TARGETID')) # Rename REDSHIFT -> TRUEZ anticipating later table joins with zbest.Z meta.rename_column('REDSHIFT', 'TRUEZ') # ---------- end simspec # explicitly set location on focal plane if needed to support airmass # variations when using specsim v0.5 if qsim.source.focal_xy is None: qsim.source.focal_xy = (u.Quantity(0, 'mm'), u.Quantity(100, 'mm')) # Set simulation parameters from the simspec header or lvmparams bright_objects = ['bgs', 'mws', 'bright', 'BGS', 'MWS', 'BRIGHT_MIX'] gray_objects = ['gray', 'grey'] if args.simspec is None: object_type = objtype flavor = None elif simspec.flavor == 'science': object_type = None flavor = simspec.header['PROGRAM'] else: object_type = None flavor = simspec.flavor log.warning( 'Maybe using an outdated simspec file with flavor={}'.format( flavor)) # Set airmass if args.airmass is not None: qsim.atmosphere.airmass = args.airmass elif args.simspec and 'AIRMASS' in simspec.header: qsim.atmosphere.airmass = simspec.header['AIRMASS'] else: qsim.atmosphere.airmass = 1.25 # Science Req. Doc L3.3.2 # Set site location if args.location is not None: qsim.observation.observatory = args.location else: qsim.observation.observatory = 'APO' # Set exptime if args.exptime is not None: qsim.observation.exposure_time = args.exptime * u.s elif args.simspec and 'EXPTIME' in simspec.header: qsim.observation.exposure_time = simspec.header['EXPTIME'] * u.s elif objtype in bright_objects: qsim.observation.exposure_time = lvmparams['exptime_bright'] * u.s else: qsim.observation.exposure_time = lvmparams['exptime_dark'] * u.s # Set Moon Phase if args.moon_phase is not None: qsim.atmosphere.moon.moon_phase = args.moon_phase elif args.simspec and 'MOONFRAC' in simspec.header: qsim.atmosphere.moon.moon_phase = simspec.header['MOONFRAC'] elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.moon_phase = 0.7 elif flavor in gray_objects: qsim.atmosphere.moon.moon_phase = 0.1 else: qsim.atmosphere.moon.moon_phase = 0.5 # Set Moon Zenith if args.moon_zenith is not None: qsim.atmosphere.moon.moon_zenith = args.moon_zenith * u.deg elif args.simspec and 'MOONALT' in simspec.header: qsim.atmosphere.moon.moon_zenith = simspec.header['MOONALT'] * u.deg elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.moon_zenith = 30 * u.deg elif flavor in gray_objects: qsim.atmosphere.moon.moon_zenith = 80 * u.deg else: qsim.atmosphere.moon.moon_zenith = 100 * u.deg # Set Moon - Object Angle if args.moon_angle is not None: qsim.atmosphere.moon.separation_angle = args.moon_angle * u.deg elif args.simspec and 'MOONSEP' in simspec.header: qsim.atmosphere.moon.separation_angle = simspec.header[ 'MOONSEP'] * u.deg elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.separation_angle = 50 * u.deg elif flavor in gray_objects: qsim.atmosphere.moon.separation_angle = 60 * u.deg else: qsim.atmosphere.moon.separation_angle = 60 * u.deg # Initialize per-camera output arrays that will be saved waves, trueflux, noisyflux, obsivar, resolution, sflux = {}, {}, {}, {}, {}, {} maxbin = 0 nmax = args.nspec for camera in qsim.instrument.cameras: # Lookup this camera's resolution matrix and convert to the sparse format used in lvmspec. R = Resolution(camera.get_output_resolution_matrix()) resolution[camera.name] = np.tile(R.to_fits_array(), [args.nspec, 1, 1]) waves[camera.name] = (camera.output_wavelength.to( u.Angstrom).value.astype(np.float32)) nwave = len(waves[camera.name]) maxbin = max(maxbin, len(waves[camera.name])) nobj = np.zeros((nmax, 3, maxbin)) # object photons nsky = np.zeros((nmax, 3, maxbin)) # sky photons nivar = np.zeros((nmax, 3, maxbin)) # inverse variance (object+sky) cframe_observedflux = np.zeros( (nmax, 3, maxbin)) # calibrated object flux cframe_ivar = np.zeros( (nmax, 3, maxbin)) # inverse variance of calibrated object flux cframe_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to calibrated flux sky_ivar = np.zeros((nmax, 3, maxbin)) # inverse variance of sky sky_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to sky only frame_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to nobj+nsky trueflux[camera.name] = np.empty( (args.nspec, nwave)) # calibrated flux noisyflux[camera.name] = np.empty( (args.nspec, nwave)) # observed flux with noise obsivar[camera.name] = np.empty( (args.nspec, nwave)) # inverse variance of flux if args.simspec: dw = np.gradient(simspec.wave[camera.name]) else: sflux = np.empty((args.nspec, npix)) # - Check if input simspec is for a continuum flat lamp instead of science # - This does not convolve to per-fiber resolution if args.simspec: if simspec.flavor == 'flat': log.info("Simulating flat lamp exposure") for i, camera in enumerate(qsim.instrument.cameras): channel = camera.name assert camera.output_wavelength.unit == u.Angstrom num_pixels = len(waves[channel]) dw = np.gradient(simspec.wave[channel]) meanspec = resample_flux( waves[channel], simspec.wave[channel], np.average(simspec.phot[channel] / dw, axis=0)) fiberflat = random_state.normal(loc=1.0, scale=1.0 / np.sqrt(meanspec), size=(nspec, num_pixels)) ivar = np.tile(meanspec, [nspec, 1]) mask = np.zeros((simspec.nspec, num_pixels), dtype=np.uint32) for kk in range((args.nspec + args.nstart - 1) // args.n_fibers + 1): camera = channel + str(kk) outfile = lvmspec.io.findfile('fiberflat', night, expid, camera) start = max(args.n_fibers * kk, args.nstart) end = min(args.n_fibers * (kk + 1), nmax) if (args.spectrograph <= kk): log.info( "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}" .format(channel, kk, start, end)) ff = FiberFlat(waves[channel], fiberflat[start:end, :], ivar[start:end, :], mask[start:end, :], meanspec, header=dict(CAMERA=camera)) write_fiberflat(outfile, ff) filePath = lvmspec.io.findfile("fiberflat", night, expid, camera) log.info("Wrote file {}".format(filePath)) sys.exit(0) # Repeat the simulation for all spectra scale = 1e-17 fluxunits = scale * u.erg / (u.s * u.cm**2 * u.Angstrom) for j in range(args.nspec): thisobjtype = objtype[j] sys.stdout.flush() if flavor == 'arc': qsim.source.update_in('Quickgen source {0}'.format, 'perfect', wavelengths * u.Angstrom, spectra * fluxunits) else: qsim.source.update_in('Quickgen source {0}'.format(j), thisobjtype.lower(), wavelengths * u.Angstrom, spectra[j, :] * fluxunits) qsim.source.update_out() qsim.simulate() qsim.generate_random_noise(random_state) for i, output in enumerate(qsim.camera_output): assert output['observed_flux'].unit == 1e17 * fluxunits # Extract the simulation results needed to create our uncalibrated # frame output file. num_pixels = len(output) nobj[j, i, :num_pixels] = output['num_source_electrons'][:, 0] nsky[j, i, :num_pixels] = output['num_sky_electrons'][:, 0] nivar[j, i, :num_pixels] = 1.0 / output['variance_electrons'][:, 0] # Get results for our flux-calibrated output file. cframe_observedflux[ j, i, :num_pixels] = 1e17 * output['observed_flux'][:, 0] cframe_ivar[ j, i, :num_pixels] = 1e-34 * output['flux_inverse_variance'][:, 0] # Fill brick arrays from the results. camera = output.meta['name'] trueflux[camera][j][:] = 1e17 * output['observed_flux'][:, 0] noisyflux[camera][j][:] = 1e17 * ( output['observed_flux'][:, 0] + output['flux_calibration'][:, 0] * output['random_noise_electrons'][:, 0]) obsivar[camera][j][:] = 1e-34 * output['flux_inverse_variance'][:, 0] # Use the same noise realization in the cframe and frame, without any # additional noise from sky subtraction for now. frame_rand_noise[ j, i, :num_pixels] = output['random_noise_electrons'][:, 0] cframe_rand_noise[j, i, :num_pixels] = 1e17 * ( output['flux_calibration'][:, 0] * output['random_noise_electrons'][:, 0]) # The sky output file represents a model fit to ~40 sky fibers. # We reduce the variance by a factor of 25 to account for this and # give the sky an independent (Gaussian) noise realization. sky_ivar[ j, i, :num_pixels] = 25.0 / (output['variance_electrons'][:, 0] - output['num_source_electrons'][:, 0]) sky_rand_noise[j, i, :num_pixels] = random_state.normal( scale=1.0 / np.sqrt(sky_ivar[j, i, :num_pixels]), size=num_pixels) armName = {"b": 0, "r": 1, "z": 2} for channel in 'brz': # Before writing, convert from counts/bin to counts/A (as in Pixsim output) # Quicksim Default: # FLUX - input spectrum resampled to this binning; no noise added [1e-17 erg/s/cm2/s/Ang] # COUNTS_OBJ - object counts in 0.5 Ang bin # COUNTS_SKY - sky counts in 0.5 Ang bin num_pixels = len(waves[channel]) dwave = np.gradient(waves[channel]) nobj[:, armName[channel], :num_pixels] /= dwave frame_rand_noise[:, armName[channel], :num_pixels] /= dwave nivar[:, armName[channel], :num_pixels] *= dwave**2 nsky[:, armName[channel], :num_pixels] /= dwave sky_rand_noise[:, armName[channel], :num_pixels] /= dwave sky_ivar[:, armName[channel], :num_pixels] /= dwave**2 # Now write the outputs in DESI standard file system. None of the output file can have more than args.n_fibers spectra # Looping over spectrograph for ii in range((args.nspec + args.nstart - 1) // args.n_fibers + 1): start = max(args.n_fibers * ii, args.nstart) # first spectrum for a given spectrograph end = min(args.n_fibers * (ii + 1), nmax) # last spectrum for the spectrograph if (args.spectrograph <= ii): camera = "{}{}".format(channel, ii) log.info( "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}" .format(channel, ii, start, end)) num_pixels = len(waves[channel]) # Write frame file framefileName = lvmspec.io.findfile("frame", night, expid, camera) frame_flux = nobj[start:end, armName[channel], :num_pixels] + \ nsky[start:end, armName[channel], :num_pixels] + \ frame_rand_noise[start:end, armName[channel], :num_pixels] frame_ivar = nivar[start:end, armName[channel], :num_pixels] # required for slicing the resolution metric, resolusion matrix has (nspec, ndiag, wave) # for example if nstart =400, nspec=150: two spectrographs: # 400-499=> 0 spectrograph, 500-549 => 1 sh1 = frame_flux.shape[0] if (args.nstart == start): resol = resolution[channel][:sh1, :, :] else: resol = resolution[channel][-sh1:, :, :] # must create lvmspec.Frame object frame = Frame(waves[channel], frame_flux, frame_ivar, resolution_data=resol, spectrograph=ii, fibermap=fibermap[start:end], meta=dict(CAMERA=camera, FLAVOR=simspec.flavor)) lvmspec.io.write_frame(framefileName, frame) framefilePath = lvmspec.io.findfile("frame", night, expid, camera) log.info("Wrote file {}".format(framefilePath)) if args.frameonly or simspec.flavor == 'arc': continue # Write cframe file cframeFileName = lvmspec.io.findfile("cframe", night, expid, camera) cframeFlux = cframe_observedflux[start:end, armName[channel], :num_pixels] + \ cframe_rand_noise[start:end, armName[channel], :num_pixels] cframeIvar = cframe_ivar[start:end, armName[channel], :num_pixels] # must create lvmspec.Frame object cframe = Frame(waves[channel], cframeFlux, cframeIvar, resolution_data=resol, spectrograph=ii, fibermap=fibermap[start:end], meta=dict(CAMERA=camera, FLAVOR=simspec.flavor)) lvmspec.io.frame.write_frame(cframeFileName, cframe) cframefilePath = lvmspec.io.findfile("cframe", night, expid, camera) log.info("Wrote file {}".format(cframefilePath)) # Write sky file skyfileName = lvmspec.io.findfile("sky", night, expid, camera) skyflux = nsky[start:end, armName[channel], :num_pixels] + \ sky_rand_noise[start:end, armName[channel], :num_pixels] skyivar = sky_ivar[start:end, armName[channel], :num_pixels] skymask = np.zeros(skyflux.shape, dtype=np.uint32) # must create lvmspec.Sky object skymodel = SkyModel(waves[channel], skyflux, skyivar, skymask, header=dict(CAMERA=camera)) lvmspec.io.sky.write_sky(skyfileName, skymodel) skyfilePath = lvmspec.io.findfile("sky", night, expid, camera) log.info("Wrote file {}".format(skyfilePath)) # Write calib file calibVectorFile = lvmspec.io.findfile("calib", night, expid, camera) flux = cframe_observedflux[start:end, armName[channel], :num_pixels] phot = nobj[start:end, armName[channel], :num_pixels] calibration = np.zeros_like(phot) jj = (flux > 0) calibration[jj] = phot[jj] / flux[jj] # - TODO: what should calibivar be? # - For now, model it as the noise of combining ~10 spectra calibivar = 10 / cframe_ivar[start:end, armName[channel], :num_pixels] # mask=(1/calibivar>0).astype(int)?? mask = np.zeros(calibration.shape, dtype=np.uint32) # write flux calibration fluxcalib = FluxCalib(waves[channel], calibration, calibivar, mask) write_flux_calibration(calibVectorFile, fluxcalib) calibfilePath = lvmspec.io.findfile("calib", night, expid, camera) log.info("Wrote file {}".format(calibfilePath))
def main(args=None): ''' Converts simspec -> frame files; see fastframe --help for usage options ''' #- TODO: use lvmutil.log if isinstance(args, (list, tuple, type(None))): args = parse(args) print('Reading files') simspec = lvmsim.io.read_simspec(args.simspec) if simspec.flavor == 'arc': print('arc exposure; no frames to output') return fibermap = simspec.fibermap obs = simspec.obs night = simspec.header['NIGHT'] expid = simspec.header['EXPID'] firstspec = args.firstspec nspec = min(args.nspec, len(fibermap) - firstspec) print('Simulating spectra {}-{}'.format(firstspec, firstspec + nspec)) wave = simspec.wave['brz'] flux = simspec.flux ii = slice(firstspec, firstspec + nspec) if simspec.flavor == 'science': sim = lvmsim.simexp.simulate_spectra(wave, flux[ii], fibermap=fibermap[ii], obsconditions=obs, dwave_out=1.0) elif simspec.flavor in ['arc', 'flat', 'calib']: x = fibermap['X_TARGET'] y = fibermap['Y_TARGET'] fiber_area = lvmsim.simexp.fiber_area_arcsec2(fibermap['X_TARGET'], fibermap['Y_TARGET']) surface_brightness = (flux.T / fiber_area).T config = lvmsim.simexp._specsim_config_for_wave(wave, dwave_out=1.0) # sim = specsim.simulator.Simulator(config, num_fibers=nspec) sim = lvmsim.specsim.get_simulator(config, num_fibers=nspec) sim.observation.exposure_time = simspec.header['EXPTIME'] * u.s sbunit = 1e-17 * u.erg / (u.Angstrom * u.s * u.cm**2 * u.arcsec**2) xy = np.vstack([x, y]).T * u.mm sim.simulate(calibration_surface_brightness=surface_brightness[ii] * sbunit, focal_positions=xy[ii]) else: raise ValueError('Unknown simspec flavor {}'.format(simspec.flavor)) sim.generate_random_noise() for i, results in enumerate(sim.camera_output): results = sim.camera_output[i] wave = results['wavelength'] scale = 1e17 if args.cframe: phot = scale * (results['observed_flux'] + results['random_noise_electrons'] * results['flux_calibration']).T ivar = 1. / scale**2 * results['flux_inverse_variance'].T else: phot = (results['num_source_electrons'] + \ results['num_sky_electrons'] + \ results['num_dark_electrons'] + \ results['random_noise_electrons']).T ivar = 1.0 / results['variance_electrons'].T R = Resolution( sim.instrument.cameras[i].get_output_resolution_matrix()) Rdata = np.tile(R.data.T, nspec).T.reshape(nspec, R.data.shape[0], R.data.shape[1]) assert np.all(Rdata[0] == R.data) assert phot.shape == (nspec, len(wave)) for spectro in range(10): imin = max(firstspec, spectro * 500) - firstspec imax = min(firstspec + nspec, (spectro + 1) * 500) - firstspec if imax <= imin: continue xphot = phot[imin:imax] xivar = ivar[imin:imax] xfibermap = fibermap[ii][imin:imax] camera = '{}{}'.format(sim.camera_names[i], spectro) meta = simspec.header.copy() meta['CAMERA'] = camera if args.cframe: units = '1e-17 erg/(s cm2 A)' else: units = 'photon/bin' if 'BUNIT' in meta: meta['BUNIT'] = units frame = Frame(wave, xphot, xivar, resolution_data=Rdata[0:imax - imin], spectrograph=spectro, fibermap=xfibermap, meta=meta) if args.cframe: outfile = lvmspec.io.findfile('cframe', night, expid, camera, outdir=args.outdir) else: outfile = lvmspec.io.findfile('frame', night, expid, camera, outdir=args.outdir) print('writing {}'.format(outfile)) lvmspec.io.write_frame(outfile, frame, units=units)
def __init__(self, wave, flux, ivar, mask=None, resolution_data=None, fibers=None, spectrograph=None, meta=None, fibermap=None, chi2pix=None, wsigma=None, ndiag=21): """ Lightweight wrapper for multiple spectra on a common wavelength grid x.wave, x.flux, x.ivar, x.mask, x.resolution_data, x.header, sp.R Args: wave: 1D[nwave] wavelength in Angstroms flux: 2D[nspec, nwave] flux ivar: 2D[nspec, nwave] inverse variance of flux Optional: mask: 2D[nspec, nwave] integer bitmask of flux. 0=good. resolution_data: 3D[nspec, ndiag, nwave] diagonals of resolution matrix data fibers: ndarray of which fibers these spectra are spectrograph: integer, which spectrograph [0-9] meta: dict-like object (e.g. FITS header) fibermap: fibermap table chi2pix: 2D[nspec, nwave] chi2 of 2D model to pixel-level data for pixels that contributed to each flux bin Parameters below allow on-the-fly resolution calculation wsigma: 2D[nspec,nwave] sigma widths for each wavelength bin for all fibers Notes: spectrograph input is used only if fibers is None. In this case, it assumes nspec_per_spectrograph = flux.shape[0] and calculates the fibers array for this spectrograph, i.e. fibers = spectrograph * flux.shape[0] + np.arange(flux.shape[0]) Attributes: All input args become object attributes. nspec : number of spectra, flux.shape[0] nwave : number of wavelengths, flux.shape[1] specmin : minimum fiber number R: array of sparse Resolution matrix objects converted from resolution_data fibermap: fibermap table if provided """ assert wave.ndim == 1 assert flux.ndim == 2 assert wave.shape[0] == flux.shape[1] assert ivar.shape == flux.shape assert (mask is None) or mask.shape == flux.shape assert (mask is None) or mask.dtype in \ (int, np.int64, np.int32, np.uint64, np.uint32), "Bad mask type "+str(mask.dtype) self.wave = wave self.flux = flux self.ivar = ivar self.meta = meta self.fibermap = fibermap self.nspec, self.nwave = self.flux.shape self.chi2pix = chi2pix self.ndiag = ndiag fibers_per_spectrograph = 500 #- hardcode; could get from lvmmodel if mask is None: self.mask = np.zeros(flux.shape, dtype=np.uint32) else: self.mask = util.mask32(mask) if resolution_data is not None: if resolution_data.ndim != 3 or \ resolution_data.shape[0] != self.nspec or \ resolution_data.shape[2] != self.nwave: raise ValueError( "Wrong dimensions for resolution_data[nspec, ndiag, nwave]" ) #- Maybe setup non-None identity matrix resolution matrix instead? self.wsigma = wsigma self.resolution_data = resolution_data if resolution_data is not None: self.wsigma = None #ignore width coefficients if resolution data is given explicitly self.ndiag = None self.R = np.array([Resolution(r) for r in resolution_data]) elif wsigma is not None: from lvmspec.quicklook.qlresolution import QuickResolution assert ndiag is not None r = [] for sigma in wsigma: r.append(QuickResolution(sigma=sigma, ndiag=self.ndiag)) self.R = np.array(r) else: #SK I believe this should be error, but looking at the #tests frame objects are allowed to not to have resolution data # thus I changed value error to a simple warning message. log = get_logger() log.warning("Frame object is constructed without resolution data or respective "\ "sigma widths. Resolution will not be available") # raise ValueError("Need either resolution_data or coefficients to generate it") self.spectrograph = spectrograph # Deal with Fibers (these must be set!) if fibers is not None: fibers = np.asarray(fibers) if len(fibers) != self.nspec: raise ValueError("len(fibers) != nspec ({} != {})".format( len(fibers), self.nspec)) if fibermap is not None and np.any(fibers != fibermap['FIBER']): raise ValueError("fibermap doesn't match fibers") if (spectrograph is not None): minfiber = spectrograph * fibers_per_spectrograph maxfiber = (spectrograph + 1) * fibers_per_spectrograph if np.any(fibers < minfiber) or np.any(maxfiber <= fibers): raise ValueError('fibers inconsistent with spectrograph') self.fibers = fibers else: if fibermap is not None: self.fibers = fibermap['FIBER'] elif spectrograph is not None: self.fibers = spectrograph * fibers_per_spectrograph + np.arange( self.nspec, dtype=int) elif (self.meta is not None) and ('FIBERMIN' in self.meta): self.fibers = self.meta['FIBERMIN'] + np.arange(self.nspec, dtype=int) else: raise ValueError("Must set fibers by one of the methods!") if self.meta is not None: self.meta['FIBERMIN'] = np.min(self.fibers)
def test_resolution_dense(self): #- dense with no offsets specified data = np.random.uniform(size=(10,10)) R = Resolution(data) Rdense = R.todense() self.assertTrue(np.all(Rdense == data)) #- with offsets offsets = np.arange(-2,4) R = Resolution(data, offsets) Rdense = R.todense() for i in offsets: self.assertTrue(np.all(Rdense.diagonal(i) == data.diagonal(i)), \ "diagonal {} doesn't match".format(i)) #- dense without offsets but larger than default_ndiag ndiag = lvmspec.resolution.default_ndiag + 5 data = np.random.uniform(size=(ndiag, ndiag)) Rdense = Resolution(data).todense() for i in range(ndiag): if i <= lvmspec.resolution.default_ndiag//2: self.assertTrue(np.all(Rdense.diagonal(i) == data.diagonal(i)), \ "diagonal {} doesn't match".format(i)) self.assertTrue(np.all(Rdense.diagonal(-i) == data.diagonal(-i)), \ "diagonal {} doesn't match".format(-i)) else: self.assertTrue(np.all(Rdense.diagonal(i) == 0.0), \ "diagonal {} not 0s".format(i)) self.assertTrue(np.all(Rdense.diagonal(-i) == 0.0), \ "diagonal {} not 0s".format(-i))
def test_resolution_sparsedia(self): data = np.random.uniform(size=(5,10)) offsets = np.arange(-2,3) #- Original case: symetric and odd number of diagonals Rdia = scipy.sparse.dia_matrix((data, offsets), shape=(10,10)) R = Resolution(Rdia) self.assertTrue(np.all(R.diagonal() == Rdia.diagonal())) #- Non symetric but still odd number of diagonals Rdia = scipy.sparse.dia_matrix((data, offsets+1), shape=(10,10)) R = Resolution(Rdia) self.assertTrue(np.all(R.diagonal() == Rdia.diagonal())) #- Even number of diagonals Rdia = scipy.sparse.dia_matrix((data[1:,:], offsets[1:]), shape=(10,10)) R = Resolution(Rdia) self.assertTrue(np.all(R.diagonal() == Rdia.diagonal())) #- Unordered diagonals data = np.random.uniform(size=(5,10)) offsets = [0,1,-1,2,-2] Rdia = scipy.sparse.dia_matrix((data, offsets), shape=(10,10)) R1 = Resolution(Rdia) R2 = Resolution(data, offsets) self.assertTrue(np.all(R1.diagonal() == Rdia.diagonal())) self.assertTrue(np.all(R2.diagonal() == Rdia.diagonal())) self.assertTrue(np.all(R1.data == R2.data))
def test_resolution(self, n = 100): dense = np.arange(n*n).reshape(n,n) R1 = Resolution(dense) assert scipy.sparse.isspmatrix_dia(R1),'Resolution is not recognized as a scipy.sparse.dia_matrix.' assert len(R1.offsets) == lvmspec.resolution.default_ndiag, 'Resolution.offsets has wrong size' R2 = Resolution(R1) assert np.array_equal(R1.toarray(),R2.toarray()),'Constructor broken for dia_matrix input.' R3 = Resolution(R1.data) assert np.array_equal(R1.toarray(),R3.toarray()),'Constructor broken for array data input.' sparse = scipy.sparse.dia_matrix((R1.data[::-1],R1.offsets[::-1]),(n,n)) R4 = Resolution(sparse) assert np.array_equal(R1.toarray(),R4.toarray()),'Constructor broken for permuted offsets input.' R5 = Resolution(R1.to_fits_array()) assert np.array_equal(R1.toarray(),R5.toarray()),'to_fits_array() is broken.' #- test different sizes of input diagonals for ndiag in [3,5,11]: R6 = Resolution(np.ones((ndiag, n))) assert len(R6.offsets) == ndiag, 'Constructor broken for ndiag={}'.format(ndiag) #- An even number if diagonals is not allowed try: ndiag = 10 R7 = Resolution(np.ones((ndiag, n))) raise RuntimeError('Incorrectly created Resolution with even number of diagonals') except ValueError as err: #- it correctly raised an error, so pass pass #- Test creation with sigmas - it should conserve flux R9 = Resolution(np.linspace(1.0, 2.0, n)) self.assertTrue(np.allclose(np.sum(R9.data, axis=0), 1.0))