Пример #1
0
def factors_as_powers(n):
    """Yields the factors of n grouped as (factor, power)"""

    # Avoid the case where n = 1
    if n == 1:
        yield (1, 1)

    # If n is prime itself, we can early terminate
    elif Primes.is_prime(n):
        yield (n, 1)
    else:
        primes = iter(Primes(__get_until(n)))
        while n != 1:
            try:
                # If we have a next prime and we can divide, do it
                prime = next(primes)
                power = 0
                while n % prime == 0:
                    power += 1
                    n //= prime

                # If we executed the while loop at least once, return this prime factor
                if power > 0:
                    yield (prime, power)

            except StopIteration:  # n is now prime itself
                yield (n, 1)
                n = 1
Пример #2
0
def factors(n):
    """Yields the factors of n"""

    # Avoid the case where n = 1
    if n == 1:
        yield 1

    # If n is prime itself, we can early terminate
    elif Primes.is_prime(n):
        yield n

    # Otherwise, try to divide n by every prime and yield the factors
    else:
        primes = iter(Primes(__get_until(n)))

        # While we can divide it, do it
        while n != 1:
            try:
                # If we have a next prime and we can divide, do it
                prime = next(primes)
                while n % prime == 0:
                    n //= prime
                    yield prime
            except StopIteration:  # n is now prime itself
                yield n
                n = 1
Пример #3
0
def count_factors(n):
    """Counts the factors of n"""

    # If n equals 1 or is prime itself, it only has one factor
    # (since 1 is always a factor when n > 1, it is not counted)
    if n == 1 or Primes.is_prime(n):
        return 1
    else:
        count = 0
        primes = iter(Primes(__get_until(n)))

        # While we can find more factors
        while n != 1:
            try:
                # If we have a next prime and we can divide, do it
                prime = next(primes)
                while n % prime == 0:
                    n //= prime
                    count += 1

            except StopIteration:  # n is now prime itself
                count += 1
                n = 1

        return count
Пример #4
0
def factors(n):
    primes = iter(Primes(100000))
    while n != 1:
        prime = next(primes)
        while n % prime == 0:
            n //= prime
            yield prime
Пример #5
0
def search():
    max_goal = 8
    max_primes = 0
    for prime in Primes(1000000):
        for fam in families(prime):
            prime_count = 0
            for child in fam():
                if Primes.is_prime(child):
                    prime_count += 1

            if prime_count > max_primes:
                max_primes = prime_count
                print('New max of {} for prime {}'.format(prime_count, prime))
                for child in fam():
                    if Primes.is_prime(child):
                        print(child, end=' ')
                print()
                if prime_count == max_goal:
                    return
Пример #6
0
def check_primes(prime_count=5, primes=[], last_largest_prime=0):
    if len(primes
           ) >= 2:  # perform checks as soon as we can for early termination
        # Concatenate all possible permutations and ensure they're primes
        for p in permutations(primes, 2):
            if not Primes.is_prime(int(str(p[0]) + str(p[1]))):
                return

        # We can avoid some combinations... (previously checked ones)
        if len(primes) == prime_count:
            print('Succeed for {}, which adds to {}'.format(
                primes, sum(primes)))

    if len(primes) < prime_count:  # carry on getting more primes
        for prime in Primes(max_prime):
            if prime <= last_largest_prime:
                continue  # do not use a lower prime (already used)

            # Clone list, append prime, and dive into the next recursion level
            next_primes = primes[:]
            next_primes.append(prime)
            check_primes(prime_count, next_primes, prime)
Пример #7
0
def work():
    prime_count = 0
    number_count = 1  # skip 1, so we never get the ratio 0/1
    for x in range(1, 20000):
        for n in get_diagonals(x):
            number_count += 1
            if Primes.is_prime(n):
                prime_count += 1

        ratio = prime_count / number_count
        if x % 100 == 0:
            print('{:.2%}'.format(ratio))

        if ratio < 0.1:  # less than 10%
            print(spiral_length(x))
            return
Пример #8
0
from lw.primes import Primes


def problem_definition():
    return '''The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
    Find the sum of all the primes below two million.'''

print(sum(Primes(2000000)))
Пример #9
0
    but there is one other 4-digit increasing sequence.

    What 12-digit number do you form by concatenating the three terms in this sequence?'''


def are_permutation(a, b):
    a = tuple(str(a))
    b = tuple(str(b))
    for permutation in permutations(a):
        if permutation == b:
            return True
    return False


for i in range(1000, 10000):
    if not Primes.is_prime(i):
        continue

    for j in range(1000, 10000):
        next2 = i + j + j
        if next2 > 9999:  # must be 4-digit
            break
        if not Primes.is_prime(next2):
            continue

        next1 = i + j
        if not Primes.is_prime(next1):
            continue

        if not are_permutation(i, next2):
            continue
Пример #10
0

done = False
maximum = 1000000
largestprime = 0
largestcount = 0

for _skip in range(maximum):
    if done:
        break

    firstprime = True
    primesum = 0
    countsum = 0
    skip = _skip
    for prime in Primes(maximum):
        # Skip the previously checked prime sum sequences
        if skip > 0:
            skip -= 1
            continue

        # If the first prime is already larger than the difference
        # between the latest largest sum and the maximum to check,
        # there is no point on carrying on checking, because any
        # sum will be larger with less numbers being summed
        if firstprime:
            firstprime = False
            if prime > maximum - largestprime:
                done = True
                break
Пример #11
0
def specific_solution():
    for prime1 in Primes(max_prime):
        s_prime1 = str(prime1)

        for prime2 in Primes(max_prime):
            # Avoid checking the same primes
            if prime2 <= prime1:
                continue
            s_prime2 = str(prime2)

            # Check if concatenating is prime
            if not Primes.is_prime(int(s_prime1 + s_prime2)):
                continue
            if not Primes.is_prime(int(s_prime2 + s_prime1)):
                continue

            # print('Checking level 2: {}, {}'.format(prime1, prime2))
            for prime3 in Primes(max_prime):
                # Avoid checking the same primes
                if prime3 <= prime2:
                    continue
                s_prime3 = str(prime3)

                # Check if concatenating is prime
                if not Primes.is_prime(int(s_prime1 + s_prime3)):
                    continue
                if not Primes.is_prime(int(s_prime3 + s_prime1)):
                    continue
                if not Primes.is_prime(int(s_prime2 + s_prime3)):
                    continue
                if not Primes.is_prime(int(s_prime3 + s_prime2)):
                    continue

                # print('Checking level 3: {}, {}, {}'.format(prime1, prime2, prime3))
                for prime4 in Primes(max_prime):
                    # Avoid checking the same primes
                    if prime4 <= prime3:
                        continue
                    s_prime4 = str(prime4)

                    # Check if concatenating is prime
                    if not Primes.is_prime(int(s_prime1 + s_prime4)):
                        continue
                    if not Primes.is_prime(int(s_prime4 + s_prime1)):
                        continue
                    if not Primes.is_prime(int(s_prime2 + s_prime4)):
                        continue
                    if not Primes.is_prime(int(s_prime4 + s_prime2)):
                        continue
                    if not Primes.is_prime(int(s_prime3 + s_prime4)):
                        continue
                    if not Primes.is_prime(int(s_prime4 + s_prime3)):
                        continue

                    # print('Checking level 4: {}, {}, {}, {}'.format(prime1, prime2, prime3, prime4))
                    for prime5 in Primes(max_prime):
                        # Avoid checking the same primes
                        if prime5 <= prime4:
                            continue
                        s_prime5 = str(prime5)

                        # Check if concatenating is prime
                        if not Primes.is_prime(int(s_prime1 + s_prime5)):
                            continue
                        if not Primes.is_prime(int(s_prime5 + s_prime1)):
                            continue
                        if not Primes.is_prime(int(s_prime2 + s_prime5)):
                            continue
                        if not Primes.is_prime(int(s_prime5 + s_prime2)):
                            continue
                        if not Primes.is_prime(int(s_prime3 + s_prime5)):
                            continue
                        if not Primes.is_prime(int(s_prime5 + s_prime3)):
                            continue
                        if not Primes.is_prime(int(s_prime4 + s_prime5)):
                            continue
                        if not Primes.is_prime(int(s_prime5 + s_prime4)):
                            continue

                        print('We did it! {} + {} + {} + {} + {} = {}'.format(
                            prime1, prime2, prime3, prime4, prime5,
                            prime1 + prime2 + prime3 + prime4 + prime5))

                        return
Пример #12
0
from lw.primes import Primes


def problem_definition():
    return '''The primes 3, 7, 109, and 673, are quite remarkable. By taking any two primes and concatenating
    them in any order the result will always be prime. For example, taking 7 and 109, both 7109 and 1097
    are prime. The sum of these four primes, 792, represents the lowest sum for a set of four primes with
    this property.

    Find the lowest sum for a set of five primes for which any two primes concatenate to produce another prime.'''


max_prime = 10000
print('Caching some primes...')
Primes(max_prime)
print('Doing work (please be patient)...')


# This general solution works for n
def check_primes(prime_count=5, primes=[], last_largest_prime=0):
    if len(primes
           ) >= 2:  # perform checks as soon as we can for early termination
        # Concatenate all possible permutations and ensure they're primes
        for p in permutations(primes, 2):
            if not Primes.is_prime(int(str(p[0]) + str(p[1]))):
                return

        # We can avoid some combinations... (previously checked ones)
        if len(primes) == prime_count:
            print('Succeed for {}, which adds to {}'.format(