Пример #1
0
def get_saliency_map_steps(matrix) -> list:
    global graph
    with graph.as_default():
        processed_matrix = transform.process_matrix(matrix, MATRIX_DIM)
        gradients = saliency_calculation.get_gradients(processed_matrix)
        # only_max_before= transform.sign(gradients)
        scaled_gradients = transform.scaleMatrix(gradients)
        # only_max= transform.sign(scaled_gradients)
        filled_matrix = transform.replace_positive_values(
            matrix, scaled_gradients)
        return [
            {
                "1. matrix": matrix
            },
            {
                "2. processed matrix": processed_matrix
            },
            {
                "3. gradients": gradients
            },
            # {"3.5 only_max_before :": only_max_before},
            {
                "4. scaled gradients": scaled_gradients
            },
            # {"4.5. only_max :": only_max},
            {
                "5. filled matrix:": filled_matrix
            },
        ]
Пример #2
0
def get_saliency_map(matrix) -> list:
    global graph
    with graph.as_default():
        processed_matrix = transform.process_matrix(matrix, MATRIX_DIM)
        gradients = np.array(
            saliency_calculation.get_gradients(processed_matrix))
        _replace_negatives(gradients)
        filled_matrix = transform.replace_positive_values(matrix, gradients)
        return filled_matrix
Пример #3
0
def get_network_score(matrix) -> list:
    global graph
    with graph.as_default():
        matrix = transform.process_matrix(matrix, MATRIX_DIM)
        return _predict_badness(matrix)