def thresholdsToLatex(path='dfs/2017/1111_workreduced.csv'): df = pd.read_csv(path, index_col=0) results = {} results['WorkReducedLowerBound'] = df.loc[:, 'fnr'].iloc[-1] results['WorkReducedUpperBound'] = 100 - df.loc[:, 'fpr'].iloc[-1] results['WorkReducedHundredMinusUpperBound'] = df.loc[:, 'fpr'].iloc[-1] results['WorkReducedTwoPercent'] = df.loc[:, 'sum'].iloc[-1] results['WorkReducedHundredMinusTwoPercent'] = 100 - df.loc[:, 'sum'].iloc[-1] # results['WorkReducedOnePercent'] = df.iloc[2,2] # results['WorkReducedPointFivePercent'] = df.iloc[1,2] # results['WorkReducedPointOnePercent'] = df.iloc[0,2] macroify.append_file(results)
print( 'Accuracy', accuracy_score(ensemble_labels_priori, ensemble_predictions_priori) * 100) print('F1', f1_score(ensemble_labels_priori, ensemble_predictions_priori) * 100) print( 'Precision', precision_score(ensemble_labels_priori, ensemble_predictions_priori) * 100) print( 'Recall', recall_score(ensemble_labels_priori, ensemble_predictions_priori) * 100) total_manual = workreduceddict[0.01]['total_manual'] results[strategy + 'WorkReducedOnePercent'] = ( total_amount_of_2018_domains - total_manual - manual_added_to_trainingset) / total_amount_of_2018_domains * 100 total_manual = workreduceddict[0.005]['total_manual'] results[strategy + 'WorkReducedPointFivePercent'] = ( total_amount_of_2018_domains - total_manual - manual_added_to_trainingset) / total_amount_of_2018_domains * 100 total_manual = workreduceddict[0.001]['total_manual'] results[strategy + 'WorkReducedPointOnePercent'] = ( total_amount_of_2018_domains - total_manual - manual_added_to_trainingset) / total_amount_of_2018_domains * 100 macroify.append_file(results)