Пример #1
0
    def __init__(self, config):
        super(NSynthTFRecordDataset, self).__init__(config)
        self._train_data_path = util.expand_path(config['train_data_path'])
        self._train_meta_path = None
        if 'train_meta_path' in config and config['train_meta_path']:
            self._train_meta_path = util.expand_path(config['train_meta_path'])
        else:
            magic_meta_path = os.path.join(config['train_root_dir'],
                                           'meta.json')
            if os.path.exists(magic_meta_path):
                self._train_meta_path = magic_meta_path

        self._instrument_sources = config['train_instrument_sources']
        self._min_pitch = config['train_min_pitch']
        self._max_pitch = config['train_max_pitch']
Пример #2
0
def main(unused_argv):
  absl.flags.FLAGS.alsologtostderr = True
  # Set hyperparams from json args and defaults
  flags = lib_flags.Flags()
  # Config hparams
  if FLAGS.config:
    config_module = importlib.import_module(
        'magenta.models.gansynth.configs.{}'.format(FLAGS.config))
    flags.load(config_module.hparams)
  # Command line hparams
  flags.load_json(FLAGS.hparams)
  # Set default flags
  lib_model.set_flags(flags)

  print('Flags:')
  flags.print_values()

  # Create training directory
  flags['train_root_dir'] = util.expand_path(flags['train_root_dir'])
  if not tf.gfile.Exists(flags['train_root_dir']):
    tf.gfile.MakeDirs(flags['train_root_dir'])

  # Save the flags to help with loading the model latter
  fname = os.path.join(flags['train_root_dir'], 'experiment.json')
  with tf.gfile.Open(fname, 'w') as f:
    json.dump(flags, f)

  # Run training
  run(flags)
Пример #3
0
def main(unused_argv):
  absl.flags.FLAGS.alsologtostderr = True
  # Set hyperparams from json args and defaults
  flags = lib_flags.Flags()
  # Config hparams
  if FLAGS.config:
    config_module = importlib.import_module(
        'magenta.models.gansynth.configs.{}'.format(FLAGS.config))
    flags.load(config_module.hparams)
  # Command line hparams
  flags.load_json(FLAGS.hparams)
  # Set default flags
  lib_model.set_flags(flags)

  print('Flags:')
  flags.print_values()

  # Create training directory
  flags['train_root_dir'] = util.expand_path(flags['train_root_dir'])
  if not tf.gfile.Exists(flags['train_root_dir']):
    tf.gfile.MakeDirs(flags['train_root_dir'])

  # Save the flags to help with loading the model latter
  fname = os.path.join(flags['train_root_dir'], 'experiment.json')
  with tf.gfile.Open(fname, 'w') as f:
    json.dump(flags, f)  # pytype: disable=wrong-arg-types

  # Run training
  run(flags)
Пример #4
0
    def load_from_path(cls, path, flags=None):
        """Instantiate a Model for eval using flags and weights from a saved model.

    Currently only supports models trained by the experiment runner, since
    Model itself doesn't save flags (so we rely the runner's experiment.json)

    Args:
      path: Path to model directory (which contains stage folders).
      flags: Additional flags for loading the model.

    Raises:
      ValueError: If folder of path contains no stage folders.

    Returns:
      model: Instantiated model with saved weights.
    """
        # Read the flags from the experiment.json file
        # experiment.json is in the folder above
        # Remove last '/' if present
        path = path.rstrip('/')
        if not path.startswith('gs://'):
            path = util.expand_path(path)
        if flags is None:
            flags = lib_flags.Flags()
        flags['train_root_dir'] = path
        experiment_json_path = os.path.join(path, 'experiment.json')
        try:
            # Read json to dict
            with tf.gfile.GFile(experiment_json_path, 'r') as f:
                experiment_json = json.load(f)
            # Load dict as a Flags() object
            flags.load(experiment_json)
        except Exception as e:  # pylint: disable=broad-except
            print("Warning! Couldn't load model flags from experiment.json")
            print(e)
        # Set default flags
        set_flags(flags)
        flags.print_values()
        # Get list_of_directories
        train_sub_dirs = sorted([
            sub_dir for sub_dir in tf.gfile.ListDirectory(path)
            if sub_dir.startswith('stage_')
        ])
        if not train_sub_dirs:
            raise ValueError(
                'No stage folders found, is %s the correct model path?' % path)
        # Get last checkpoint
        last_stage_dir = train_sub_dirs[-1]
        stage_id = int(last_stage_dir.split('_')[-1].strip('/'))
        weights_dir = os.path.join(path, last_stage_dir)
        ckpt = tf.train.latest_checkpoint(weights_dir)
        print('Load model from {}'.format(ckpt))
        # Load the model, use eval_batch_size if present
        batch_size = flags.get('eval_batch_size',
                               train_util.get_batch_size(stage_id, **flags))
        model = cls(stage_id, batch_size, flags)
        model.saver.restore(model.sess, ckpt)
        return model
Пример #5
0
def main(unused_argv):
    absl.flags.FLAGS.alsologtostderr = True

    # Load the model
    flags = lib_flags.Flags({'batch_size_schedule': [FLAGS.batch_size]})
    model = lib_model.Model.load_from_path(FLAGS.ckpt_dir, flags)

    # Make an output directory if it doesn't exist
    output_dir = util.expand_path(FLAGS.output_dir)

    if not tf.gfile.Exists(output_dir):
        tf.gfile.MakeDirs(output_dir)

    # generate 4 random latent vectors
    z_instruments = model.generate_z(4)
    instrument_names = list(
        gen_instrument_name(random.randint(3, 8)) for _ in range(4))

    # interpolate
    res = FLAGS.resolution
    pitches = parse_pitches(FLAGS.pitches)
    xy_grid = make_grid(res)

    print()
    print("resolution =", res)
    print("pitches =", pitches)
    print("z_instruments.shape =", z_instruments.shape)
    print("z_instruments =", z_instruments)
    print("instrument_names =", instrument_names)

    z_notes, note_metas = get_z_notes(z_instruments, instrument_names, xy_grid)
    print("z_notes.shape =", z_notes.shape)

    z_notes_rep = np.repeat(z_notes, len(pitches), axis=0)
    print("z_notes_rep.shape =", z_notes_rep.shape)

    pitches_rep = pitches * z_notes.shape[0]
    print("len(pitches_rep) =", len(pitches_rep))

    print("generating {} samples,,".format(len(z_notes_rep)))
    audio_notes = model.generate_samples_from_z(z_notes_rep, pitches_rep)

    audio_metas = []
    for note_meta in note_metas:
        for pitch in pitches:
            meta = dict(note_meta)
            meta["pitch"] = pitch
            audio_metas.append(meta)

    print("audio_notes.shape =", audio_notes.shape)
    print("len(audio_metas) =", len(audio_metas))

    for i, (wave, meta) in enumerate(zip(audio_notes, audio_metas)):
        name = meta_to_name(meta)
        fn = os.path.join(output_dir, "gen_{}.wav".format(name))
        gu.save_wav(wave, fn)
Пример #6
0
  def load_from_path(cls, path, flags=None):
    """Instantiate a Model for eval using flags and weights from a saved model.

    Currently only supports models trained by the experiment runner, since
    Model itself doesn't save flags (so we rely the runner's experiment.json)

    Args:
      path: Path to model directory (which contains stage folders).
      flags: Additional flags for loading the model.

    Raises:
      ValueError: If folder of path contains no stage folders.

    Returns:
      model: Instantiated model with saved weights.
    """
    # Read the flags from the experiment.json file
    # experiment.json is in the folder above
    # Remove last '/' if present
    path = path[:-1] if path.endswith('/') else path
    path = util.expand_path(path)
    if flags is None:
      flags = lib_flags.Flags()
    flags['train_root_dir'] = path
    experiment_json_path = os.path.join(path, 'experiment.json')
    try:
      # Read json to dict
      with tf.gfile.GFile(experiment_json_path, 'r') as f:
        experiment_json = json.load(f)
      # Load dict as a Flags() object
      flags.load(experiment_json)
    except Exception as e:  # pylint: disable=broad-except
      print("Warning! Couldn't load model flags from experiment.json")
      print(e)
    # Set default flags
    set_flags(flags)
    flags.print_values()
    # Get list_of_directories
    train_sub_dirs = sorted([sub_dir for sub_dir in tf.gfile.ListDirectory(path)
                             if sub_dir.startswith('stage_')])
    if not train_sub_dirs:
      raise ValueError('No stage folders found, is %s the correct model path?'
                       % path)
    # Get last checkpoint
    last_stage_dir = train_sub_dirs[-1]
    stage_id = int(last_stage_dir.split('_')[-1])
    weights_dir = os.path.join(path, last_stage_dir)
    ckpt = tf.train.latest_checkpoint(weights_dir)
    print('Load model from {}'.format(ckpt))
    # Load the model, use eval_batch_size if present
    batch_size = flags.get('eval_batch_size',
                           train_util.get_batch_size(stage_id, **flags))
    model = cls(stage_id, batch_size, flags)
    model.saver.restore(model.sess, ckpt)
    return model
Пример #7
0
def load_midi(midi_path):
  """Load midi as a notesequence."""
  midi_path = util.expand_path(midi_path)
  ns = mm.midi_file_to_sequence_proto(midi_path)
  pitches = np.array([n.pitch for n in ns.notes])
  start_times = np.array([n.start_time for n in ns.notes])
  end_times = np.array([n.end_time for n in ns.notes])
  notes = {'pitches': pitches,
           'start_times': start_times,
           'end_times': end_times}
  # print(ns)
  # print(notes)
  return ns, notes
Пример #8
0
def load_midi(midi_path):
  """Load midi as a notesequence."""
  midi_path = util.expand_path(midi_path)
  ns = mm.midi_file_to_sequence_proto(midi_path)
  pitches = np.array([n.pitch for n in ns.notes])
  start_times = np.array([n.start_time for n in ns.notes])
  end_times = np.array([n.end_time for n in ns.notes])
  notes = {'pitches': pitches,
           'start_times': start_times,
           'end_times': end_times}
  # print(ns)
  # print(notes)
  return ns, notes
Пример #9
0
def load_midi(midi_path, min_pitch=36, max_pitch=84):
    """Load midi as a notesequence."""
    midi_path = util.expand_path(midi_path)
    ns = mm.midi_file_to_sequence_proto(midi_path)
    pitches = np.array([n.pitch for n in ns.notes])
    velocities = np.array([n.velocity for n in ns.notes])
    start_times = np.array([n.start_time for n in ns.notes])
    end_times = np.array([n.end_time for n in ns.notes])
    valid = np.logical_and(pitches >= min_pitch, pitches <= max_pitch)
    notes = {'pitches': pitches[valid],
             'velocities': velocities[valid],
             'start_times': start_times[valid],
             'end_times': end_times[valid]}
    return ns, notes
Пример #10
0
def load_midi(midi_path, min_pitch=36, max_pitch=84):
  """Load midi as a notesequence."""
  midi_path = util.expand_path(midi_path)
  ns = mm.midi_file_to_sequence_proto(midi_path)
  pitches = np.array([n.pitch for n in ns.notes])
  velocities = np.array([n.velocity for n in ns.notes])
  start_times = np.array([n.start_time for n in ns.notes])
  end_times = np.array([n.end_time for n in ns.notes])
  valid = np.logical_and(pitches >= min_pitch, pitches <= max_pitch)
  notes = {'pitches': pitches[valid],
           'velocities': velocities[valid],
           'start_times': start_times[valid],
           'end_times': end_times[valid]}
  return ns, notes
Пример #11
0
def main(unused_argv):
  absl.flags.FLAGS.alsologtostderr = True

  # Load the model
  flags = lib_flags.Flags(
      {
          'batch_size_schedule': [FLAGS.batch_size],
          'tfds_data_dir': FLAGS.tfds_data_dir
      })
  model = lib_model.Model.load_from_path(FLAGS.ckpt_dir, flags)

  # Make an output directory if it doesn't exist
  output_dir = util.expand_path(FLAGS.output_dir)
  if not tf.gfile.Exists(output_dir):
    tf.gfile.MakeDirs(output_dir)

  if FLAGS.midi_file:
    # If a MIDI file is provided, synthesize interpolations across the clip
    unused_ns, notes = gu.load_midi(FLAGS.midi_file)

    # Distribute latent vectors linearly in time
    z_instruments, t_instruments = gu.get_random_instruments(
        model,
        notes['end_times'][-1],
        secs_per_instrument=FLAGS.secs_per_instrument)

    # Get latent vectors for each note
    z_notes = gu.get_z_notes(notes['start_times'], z_instruments, t_instruments)

    # Generate audio for each note
    print('Generating {} samples...'.format(len(z_notes)))
    audio_notes = model.generate_samples_from_z(z_notes, notes['pitches'])

    # Make a single audio clip
    audio_clip = gu.combine_notes(audio_notes,
                                  notes['start_times'],
                                  notes['end_times'],
                                  notes['velocities'])

    # Write the wave files
    fname = os.path.join(output_dir, 'generated_clip.wav')
    gu.save_wav(audio_clip, fname)
  else:
    # Otherwise, just generate a batch of random sounds
    waves = model.generate_samples(FLAGS.batch_size)
    # Write the wave files
    for i in range(len(waves)):
      fname = os.path.join(output_dir, 'generated_{}.wav'.format(i))
      gu.save_wav(waves[i], fname)
Пример #12
0
def main(unused_argv):
  absl.flags.FLAGS.alsologtostderr = True

  # Load the model
  flags = lib_flags.Flags({'batch_size_schedule': [FLAGS.batch_size]})
  model = lib_model.Model.load_from_path(FLAGS.ckpt_dir, flags)

  # Make an output directory if it doesn't exist
  output_dir = util.expand_path(FLAGS.output_dir)
  if not tf.gfile.Exists(output_dir):
    tf.gfile.MakeDirs(output_dir)

  if FLAGS.midi_file:
    # If a MIDI file is provided, synthesize interpolations across the clip
    unused_ns, notes = gu.load_midi(FLAGS.midi_file)

    # Distribute latent vectors linearly in time
    z_instruments, t_instruments = gu.get_random_instruments(
        model,
        notes['end_times'][-1],
        secs_per_instrument=FLAGS.secs_per_instrument)

    # Get latent vectors for each note
    z_notes = gu.get_z_notes(notes['start_times'], z_instruments, t_instruments)

    # Generate audio for each note
    print('Generating {} samples...'.format(len(z_notes)))
    audio_notes = model.generate_samples_from_z(z_notes, notes['pitches'])

    # Make a single audio clip
    audio_clip = gu.combine_notes(audio_notes,
                                  notes['start_times'],
                                  notes['end_times'],
                                  notes['velocities'])

    # Write the wave files
    fname = os.path.join(output_dir, 'generated_clip.wav')
    gu.save_wav(audio_clip, fname)
  else:
    # Otherwise, just generate a batch of random sounds
    waves = model.generate_samples(FLAGS.batch_size)
    # Write the wave files
    for i in range(len(waves)):
      fname = os.path.join(output_dir, 'generated_{}.wav'.format(i))
      gu.save_wav(waves[i], fname)
Пример #13
0
 def __init__(self, config):
     self._train_data_path = util.expand_path(config['train_data_path'])
Пример #14
0
  for key, value in filemap.iteritems():
    fname = os.path.join('/content/gansynth/midi', key)
    with open(fname, 'w') as f:
      f.write(value)
      print('Writing {}'.format(fname))
    file_list.append(fname)
  return file_list

# GLOBALS
CKPT_DIR = '/content/gansynth/acoustic_only'
output_dir = '/content/gansynth/samples'
BATCH_SIZE = 16
SR = 16000

# Make an output directory if it doesn't exist
OUTPUT_DIR = util.expand_path(output_dir)
if not tf.gfile.Exists(OUTPUT_DIR):
  tf.gfile.MakeDirs(OUTPUT_DIR)

# Load the model
tf.reset_default_graph()
flags = lib_flags.Flags({'batch_size_schedule': [BATCH_SIZE]})
model = lib_model.Model.load_from_path(CKPT_DIR, flags)

# Helper functions
def load_midi(midi_path, min_pitch=36, max_pitch=84):
  """Load midi as a notesequence."""
  midi_path = util.expand_path(midi_path)
  ns = mm.midi_file_to_sequence_proto(midi_path)
  pitches = np.array([n.pitch for n in ns.notes])
  velocities = np.array([n.velocity for n in ns.notes])
def main(unused_argv):
    absl.flags.FLAGS.alsologtostderr = True

    # Load the model
    flags = lib_flags.Flags({'batch_size_schedule': [FLAGS.batch_size]})
    model = lib_model.Model.load_from_path(FLAGS.ckpt_dir, flags)

    # Make an output directory if it doesn't exist
    output_dir = util.expand_path(FLAGS.output_dir)
    if not tf.gfile.Exists(output_dir):
        tf.gfile.MakeDirs(output_dir)

    with open(FLAGS.pca_file, "rb") as fp:
        pca = pickle.load(fp)

    if FLAGS.seed != None:
        np.random.seed(seed=FLAGS.seed)
        tf.random.set_random_seed(FLAGS.seed)

    edits_axis = np.linspace(FLAGS.min, FLAGS.max, FLAGS.steps)
    edits_list = list(cartesian_product(edits_axis, edits_axis))

    pitch_arr = np.array([FLAGS.pitch])

    edits_batches = batch(FLAGS.batch_size, edits_list, [])
    pitch_batches = [[FLAGS.pitch] * FLAGS.batch_size] * len(edits_batches)

    fig, ax = plt.subplots(nrows=FLAGS.steps,
                           ncols=FLAGS.steps,
                           figsize=(15, 7.5))
    fig.set_tight_layout(True)

    def _plot():
        j = 0
        for edits_batch, pitch_batch in zip(edits_batches, pitch_batches):
            waves = model.generate_samples_from_edits(pitch_batch, edits_batch,
                                                      pca)

            for i, edits in enumerate(edits_batch):
                if j >= len(edits_list):
                    return

                row = j // FLAGS.steps
                col = j % FLAGS.steps

                wave = waves[i]
                # wave = np.random.rand(64000)

                x = edits[0]
                y = edits[1]

                # plot wave
                subplot = ax[col][row]
                subplot.title.set_text("({}, {})".format(
                    format_float(x), format_float(y)))
                plotstft(subplot, wave, 16000, binsize=2**8, colormap="magma")
                subplot.set_axis_off()

                # save wave
                gu.save_wav(
                    wave,
                    os.path.join(output_dir, "wave_{},{}.wav".format(x, y)))

                j += 1

    _plot()

    plt.savefig(os.path.join(output_dir, "plot.svg"), bbox_inches="tight")
    if FLAGS.show:
        plt.show()

    meta = [
        "checkpoint name: {}".format(os.path.basename(FLAGS.ckpt_dir)),
        "pca name: {}".format(os.path.basename(FLAGS.pca_file)),
        "pitch: {}".format(FLAGS.pitch), "min: {}".format(FLAGS.min),
        "max: {}".format(FLAGS.max), "steps: {}".format(FLAGS.steps)
    ]
    with open(os.path.join(output_dir, "meta.txt"), "w") as fp:
        fp.write("\n".join(meta) + "\n")
Пример #16
0
def main(unused_argv):
    absl.flags.FLAGS.alsologtostderr = True

    # Load the model
    flags = lib_flags.Flags({
        'batch_size_schedule': [FLAGS.batch_size],
        **({
            'tfds_data_dir': FLAGS.tfds_data_dir
        } if FLAGS.tfds_data_dir else {})
    })
    model = lib_model.Model.load_from_path(FLAGS.ckpt_dir, flags)

    # Make an output directory if it doesn't exist
    output_dir = util.expand_path(FLAGS.output_dir)
    if not tf.gfile.Exists(output_dir):
        tf.gfile.MakeDirs(output_dir)

    if FLAGS.seed != None:
        np.random.seed(seed=FLAGS.seed)
        tf.random.set_random_seed(FLAGS.seed)

    layer_offsets = {}

    if FLAGS.edits_file:
        with open(FLAGS.edits_file, "rb") as fp:
            edits_dict = pickle.load(fp)

        assert "layer" in edits_dict
        assert "comp" in edits_dict

        directions = edits_dict["comp"]

        amounts = np.zeros(edits_dict["comp"].shape[:1], dtype=np.float32)
        amounts[:len(list(map(float, FLAGS.edits)))] = FLAGS.edits

        scaled_directions = amounts.reshape(-1, 1, 1, 1) * directions

        linear_combination = np.sum(scaled_directions, axis=0)
        linear_combination_batch = np.repeat(linear_combination.reshape(
            1, *linear_combination.shape),
                                             FLAGS.batch_size,
                                             axis=0)

        layer_offsets[edits_dict["layer"]] = linear_combination_batch

    if FLAGS.midi_file:
        # If a MIDI file is provided, synthesize interpolations across the clip
        unused_ns, notes = gu.load_midi(FLAGS.midi_file)

        # Distribute latent vectors linearly in time
        z_instruments, t_instruments = gu.get_random_instruments(
            model,
            notes['end_times'][-1],
            secs_per_instrument=FLAGS.secs_per_instrument)

        # Get latent vectors for each note
        z_notes = gu.get_z_notes(notes['start_times'], z_instruments,
                                 t_instruments)

        # Generate audio for each note
        print('Generating {} samples...'.format(len(z_notes)))
        audio_notes = model.generate_samples_from_z(
            z_notes, notes['pitches'], layer_offsets=layer_offsets)

        # Make a single audio clip
        audio_clip = gu.combine_notes(audio_notes, notes['start_times'],
                                      notes['end_times'], notes['velocities'])

        # Write the wave files
        fname = os.path.join(output_dir, 'generated_clip.wav')
        gu.save_wav(audio_clip, fname)
    else:
        # Otherwise, just generate a batch of random sounds
        waves = model.generate_samples(FLAGS.batch_size,
                                       pitch=FLAGS.pitch,
                                       layer_offsets=layer_offsets)
        # Write the wave files
        for i in range(len(waves)):
            fname = os.path.join(output_dir, 'generated_{}.wav'.format(i))
            gu.save_wav(waves[i], fname)
def usage():
    print("Usage: python3 gansynth.py <path_to_model> <path_to_output_dir> <path_to_midi_file:optional>")

if len(sys.argv) < 3:
    usage()
    raise SystemExit

## Variables ##

ckpt_dir, output_dir = sys.argv[1], sys.argv[2]

batch_size = 16
sample_rate = SAMPLE_RATE

# Make an output directory if it doesn't exist
output_dir = util.expand_path(output_dir)
if not tf.gfile.Exists(output_dir):
    tf.gfile.MakeDirs(output_dir)

# Load the model
tf.reset_default_graph()
flags = lib_flags.Flags({'batch_size_schedule': [batch_size]})
model = lib_model.Model.load_from_path(ckpt_dir, flags)

# Helper functions
def load_midi(midi_path, min_pitch=36, max_pitch=84):
    """Load midi as a notesequence."""
    midi_path = util.expand_path(midi_path)
    ns = music.midi_file_to_sequence_proto(midi_path)
    pitches = np.array([n.pitch for n in ns.notes])
    velocities = np.array([n.velocity for n in ns.notes])
Пример #18
0
 def __init__(self, config):
   self._train_data_path = util.expand_path(config['train_data_path'])
Пример #19
0
def main(unused_argv):
    absl.flags.FLAGS.alsologtostderr = True

    # Load the model
    flags = lib_flags.Flags({'batch_size_schedule': [FLAGS.batch_size]})
    model = lib_model.Model.load_from_path(FLAGS.ckpt_dir, flags)

    # Make an output directory if it doesn't exist
    output_dir = util.expand_path(FLAGS.output_dir)
    if not tf.gfile.Exists(output_dir):
        tf.gfile.MakeDirs(output_dir)

    if FLAGS.midi_file:
        # If a MIDI file is provided, synthesize interpolations across the clip
        unused_ns, notes = gu.load_midi(FLAGS.midi_file)

        # Distribute latent vectors linearly in time
        z_instruments, t_instruments = gu.get_random_instruments(
            model,
            notes['end_times'][-1],
            secs_per_instrument=FLAGS.secs_per_instrument)

        # Get latent vectors for each note
        z_notes = gu.get_z_notes(notes['start_times'], z_instruments,
                                 t_instruments)

        # Generate audio for each note
        print('Generating {} samples...'.format(len(z_notes)))
        audio_notes = model.generate_samples_from_z(z_notes, notes['pitches'])

        # Make a single audio clip
        audio_clip = gu.combine_notes(audio_notes, notes['start_times'],
                                      notes['end_times'], notes['velocities'])

        # Write the wave files
        fname = os.path.join(output_dir, 'generated_clip.wav')
        gu.save_wav(audio_clip, fname)
    else:
        # Otherwise, just generate a batch of random sounds

        # waves = model.generate_samples(FLAGS.batch_size) # original
        waves, z = model.generate_samples(
            FLAGS.batch_size, pitch=44
        )  #DEBUG: generate on singular pitch (range: 24-84), return latent vectors

        # Write the wave files
        for i in range(len(waves)):
            fname = os.path.join(output_dir, 'generated_{}.wav'.format(i))
            gu.save_wav(waves[i], fname)

        # DEBUG: write z to file for later analysis
        fname = os.path.join(output_dir, 'z.p')
        pickle.dump(z, open(fname, 'wb'))

        # DEBUG: flag samples based on similar latent variables
        flagged = get_flagged_latents(z, n=10)
        print("\nflagged (z):")
        for i in flagged:
            print(i)

        # DEBUG: flag samples based on similar waveforms
        flagged = get_flagged_waves_par(waves, n=10, frac=0.01)
        print("\nflagged (waves):")
        for i in flagged:
            print(i)
            fname = os.path.join(output_dir,
                                 '_sim_{}-{}.wav'.format(i[0][0], i[0][1]))
            gu.save_wav(np.array(list(waves[i[0][0]]) + list(waves[i[0][1]])),
                        fname)