Пример #1
0
class TestComposedModelDiffConstrained(TestCase, ComposedModelTestMixIn):
    parameters = ("time", "location")
    options = {"scale": [1, 1, -1]}
    components = [
        (load_model_shc_combined(CHAOS6_STATIC,
                                 CHAOS6_CORE_LATEST,
                                 to_mjd2000=decimal_year_to_mjd2000_simple),
         1.0, {
             "max_degree": 15
         }),
        (load_model_shc(CHAOS6_CORE_LATEST,
                        to_mjd2000=decimal_year_to_mjd2000_simple), -1.0, {
                            "min_degree": 5,
                            "max_degree": 15
                        }),
    ]
    reference_values = (6201.125, (30.0, 40.0, 6400.0),
                        (31512.85733779784, 2660.412538490814,
                         30567.851101678763))
    validity = (-1058.4945, 7195.49805)
Пример #2
0
 def model(self):
     if not hasattr(self, "_model"):
         self._model = load_model_shc(IGRF12,
                                      interpolate_in_decimal_years=True)
     return self._model
Пример #3
0
 def load(self):
     return load_model_shc(CHAOS6_CORE_LATEST,
                           validity_start=2000.0,
                           validity_end=2018.0)
Пример #4
0
 def load(self):
     return load_model_shc(CHAOS6_CORE_LATEST)
Пример #5
0
 def load(self):
     return load_model_shc(CHAOS6_STATIC)
Пример #6
0
 def load(self):
     return load_model_shc(MF7)
Пример #7
0
 def load(self):
     return load_model_shc(LCS1)
Пример #8
0
 def load(self):
     return load_model_shc(SIFM)
Пример #9
0
 def load(self):
     return load_model_shc(IGRF12, interpolate_in_decimal_years=True)
Пример #10
0
)
from magmod.util import datetime_to_decimal_year, vnorm

from magmod.magnetic_model.parser_mio import parse_swarm_mio_file
from magmod.magnetic_model.tests.data import SWARM_MIO_SHA_2_TEST_DATA
import magmod._pymm as pymm

print(SWARM_MIO_SHA_2_TEST_DATA) #DIFI4 is a type of MIO SHA model
print(mjd2000_to_decimal_year(7305))
print(mjd2000_to_decimal_year([5479., 7305., 6392.0]))
d1 = dt.datetime(2015,1,1)   # import time , location(lat, lon)
d11 = datetime_to_decimal_year(d1) # datetime to decimal year
loc = (30.0, 40.0, 1000.0)
wmm2015 = load_model_wmm(WMM_2015)  #load wmm2015 model
igrf11 = load_model_igrf(IGRF11)    #load igrf11 model
igrf12 = load_model_shc(IGRF12, interpolate_in_decimal_years=True)    #load igrf12 model

igrf13 = load_model_igrf(IGRF13)
wmm2020 = load_model_wmm(WMM_2020)

emm = load_model_emm(EMM_2010_STATIC, EMM_2010_SECVAR)  #load emm model
options = {"scale": [1, 1, -1]}   #-1 is Z direction

wmm2020.eval(decimal_year_to_mjd2000(d11), loc, 0, 0, **options) 
igrf13.eval(decimal_year_to_mjd2000(d11), loc, 0, 0, **options)

wmm2015.eval(decimal_year_to_mjd2000(d11), loc, 0, 0, **options) # 0,0 mean input,output using GEODETIC_ABOVE_WGS84
igrf11.eval(decimal_year_to_mjd2000(d11), loc, 0, 0, **options)
igrf12.eval(decimal_year_to_mjd2000(d11), loc, 0, 0, **options) #North-X, East-Y, Vertical-Z
vnorm(igrf12.eval(decimal_year_to_mjd2000(d11), (30.0, 40.0, 1000.0), 0, 0)) #Total intensity
mjd2000_to_decimal_year([5479., 7305., 6392.0])