def __init__(self, mass, mintemp=1e4, composition="CO", P_end_ratio=1e-8, mass_tol=1e-6, nreps=100, fakeouterpoint=False, stop_invertererr=True, stop_mrat=2., stop_positivepgrad=True, ps_eostol=1e-8, stopcount_max=5, dontintegrate=False, verbose=True): omega=0. omegatol = 1e-2 self.P_end_ratio = P_end_ratio self.fakeouterpoint = fakeouterpoint self.stop_invertererr = stop_invertererr self.stop_mrat = stop_mrat self.stop_positivepgrad = stop_positivepgrad self.ps_eostol = ps_eostol self.stopcount_max = stopcount_max self.verbose = verbose magzero = magprof.magprofile(None, None, None, blankfunc=True) maghydrostar.__init__(self, mass, False, magzero, S_want=1e8, omega=omega, mass_tol=mass_tol, composition=composition, derivtype="sim", simd_usegammavar=False, simd_usegrav=False, simd_usegrav_rcut=0.0, simd_suppress=False, simd_userot=False, nablarat_crit=False, nrc_dens=1e30, P_end_ratio=self.P_end_ratio, densest=False, nreps=nreps, mintemp=mintemp, fakeouterpoint=self.fakeouterpoint, stop_invertererr=self.stop_invertererr, stop_mrat=self.stop_mrat, stop_positivepgrad=self.stop_positivepgrad, ps_eostol=self.ps_eostol, omegatol=omegatol, stopcount_max=self.stopcount_max, dontintegrate=True, verbose=self.verbose)
def make_runaway_steve(starmass=1.2*1.9891e33, mymag=False, omega=0., omega_run_rat=0.8, S_arr=10**np.arange(7.5,8.2,0.25), mlt_coeff="phil", uvs_k=3, uvs_s=None, mintemp=1e5, S_old=False, mass_tol=1e-6, P_end_ratio=1e-8, densest=False, stop_mindenserr=1e-10, L_tol=1e-6, keepstars=False, omega_crit_tol=1e-3, omega_warn=10., de_err_tol=[1e6, 1e7], verbose=True): """Obtains runaway of a star of some given mass, magnetic field, and rotation. Outputs an object (usually several hundred megs large) that includes run inputs as "run_inputs", as well as all stellar output curves (hence its size) under "stars". Arguments: starmass : wanted mass mymag : magnetic profile object. Defaults to false, meaning no magnetic field. omega : rigid rotation angular velocity. Defaults to 0 (non-rotating). If < 0, attempts to estimate break-up omega with self.getomegamax(), if >= 0, uses user defined value. S_arr : list of central entropy values in the runaway track mintemp : temperature floor, effectively switches from adiabatic to isothermal profile if reached S_old : if True, uses the S_old function of StarModSteve to prevent entropy from decreasing below previously calculated entropy curve (which should not occur in a runaway and leads to unphysical "right hooks" in runaway rho-T diagrams). mlt_coeff : ["phil", "wwk", "kippw", "steve"] Sets mixing length theory coefficients for calculating velocity and superadiabatic temperature gradients. "phil" is the standard faire coefficients suggested by Phil Chang; "wwk" is back-derived from Woosley, Wunch and Kuhlen 2004; "kippw" is from Kippenhahn & Wieigert (identical to Cox & Giuli); "steve" is from Stevenson 1979. Since Stevenson's rotational and magnetic corrections to convection are expressed as ratios of velocity and temperature gradient, they can be used with any of these mlt_coeffs. uvs_k : degree of the smoothing spline in scipy.interpolate.UnivariateSpline. Must be <= 5; default is k=3. uvs_s : UnivariateSpline positive smoothing factor used to choose the number of knots. Default is None. mass_tol : fractional tolerance between mass wanted and mass produced by self.getstarmodel() P_end_ratio : ratio of P/P_c at which to terminate stellar integration densest : central density initial estimate for self.getstarmodel() stop_mindenserr : density floor, below which integration is halted. Default is set to 1e-10 to prevent it from ever being reached. Helmholtz sometimes has trouble below this 1e-8; try adjusting this value to eliminate inverter errors. L_tol : conservation of angular momentum error tolerance omega_crit_tol : when using mystar.getomegamax(), absolute error tolerance for maximum omega omega_warn : stop integration within mystar.getrotatingstarmodel() if self.omega approaches omega_warn*omega_crit estimate. Defaults to 10 to prevent premature stoppage. de_err_tol : densities at which relaxed error tolerances kick in. verbose : report happenings within code """ # Save a few details about the magnetic field (though we'll need better records for the actual paper) try: mymagsave = np.array([float(mymag.fBfld_r(0)), float(mymag.fBfld_r(2e8))]) except: if verbose: print "Magnetic field not found! Hopefully this is what you wanted." mymagsave = False r_in = {"mass": starmass, "magprofile": mymagsave, "omega": omega, "omega_run_rat": omega_run_rat, "S_arr": S_arr, "mintemp": mintemp, "S_old": S_old, "mlt_coeff": mlt_coeff, "composition": "CO", "tog_coul": True, "P_end_ratio": P_end_ratio, "ps_eostol": 1e-8, "fakeouterpoint": False, "stop_invertererr": True, "stop_mrat": 2., "stop_positivepgrad": True, "stop_mindenserr": stop_mindenserr, "densest": densest, "mass_tol": mass_tol, "L_tol": L_tol, "omega_crit_tol": omega_crit_tol, "omega_warn": omega_warn, "lowerr_tol": de_err_tol[0], "mederr_tol": de_err_tol[1], "uvs_k": uvs_k, "uvs_s": uvs_s} if (omega != 0) or mymag: print "*************You want to make an MHD/rotating star; let's first try making a stationary pure hydro star!************" mymagzero = magprof.magprofile(None, None, None, None, blankfunc=True) hstar = Star.mhs_steve(r_in["mass"], False, magprofile=mymagzero, omega=0., temp_c=5e6, mintemp=r_in["mintemp"], composition=r_in["composition"], togglecoulomb=r_in["tog_coul"], mlt_coeff=r_in["mlt_coeff"], P_end_ratio=r_in["P_end_ratio"], ps_eostol=r_in["ps_eostol"], fakeouterpoint=r_in["fakeouterpoint"], stop_invertererr=r_in["stop_invertererr"], stop_mrat=r_in["stop_mrat"], stop_positivepgrad=r_in["stop_positivepgrad"], stop_mindenserr=r_in["stop_mindenserr"], densest=r_in["densest"], mass_tol=r_in["mass_tol"], L_tol=r_in["L_tol"], omega_crit_tol=r_in["omega_crit_tol"], nreps=100, verbose=verbose) densest=0.9*hstar.data["rho"][0] print "*************Okay, let's make a low-temperature (MHD/rotating) star************" #Rest after this is identical to function call above mystar = Star.mhs_steve(r_in["mass"], False, magprofile=mymag, omega=r_in["omega"], temp_c=5e6, mintemp=r_in["mintemp"], composition=r_in["composition"], togglecoulomb=r_in["tog_coul"], mlt_coeff=r_in["mlt_coeff"], P_end_ratio=r_in["P_end_ratio"], ps_eostol=r_in["ps_eostol"], fakeouterpoint=r_in["fakeouterpoint"], stop_invertererr=r_in["stop_invertererr"], stop_mrat=r_in["stop_mrat"], stop_positivepgrad=r_in["stop_positivepgrad"], stop_mindenserr=r_in["stop_mindenserr"], densest=r_in["densest"], mass_tol=r_in["mass_tol"], L_tol=r_in["L_tol"], omega_crit_tol=r_in["omega_crit_tol"], nreps=100, verbose=verbose) if r_in["omega"] < 0: print "FOUND critical Omega = {0:.3e}! We'll use {1:.3e} of this value for the runaway.".format(mystar.omega, r_in["omega_run_rat"]) r_in["omega_crit_foundinfirststep"] = mystar.omega mystar.omega *= r_in["omega_run_rat"] mystar.getstarmodel(densest=0.9*mystar.data["rho"][0], P_end_ratio=r_in["P_end_ratio"], ps_eostol=r_in["ps_eostol"]) if r_in["omega"]: if mystar.omega > mystar.getcritrot(max(mystar.data["M"]), mystar.data["R"][-1]): print "WARNING: exceeding estimated critical rotation! Consider restarting this run." r_in["L_original"] = mystar.getmomentofinertia(mystar.data["R"], mystar.data["rho"])[-1]*mystar.omega mystar.L_want = r_in["L_original"] # Store initial angular momentum for future use. out_dict = {"temp_c": np.zeros(len(S_arr)+1), "dens_c": np.zeros(len(S_arr)+1), "omega": np.zeros(len(S_arr)+1), "B_c": np.zeros(len(S_arr)+1), "S_c": np.zeros(len(S_arr)+1), "R": np.zeros(len(S_arr)+1), "stars": []} if "R_nuc" not in mystar.data.keys(): # Obtain timescale info if it's not already printed. mystar.gettimescales() out_dict["run_inputs"] = r_in if r_in["omega"] < 0: out_dict["omega_crit"] = r_in["omega_crit_foundinfirststep"] out_dict["S_c"][0] = mystar.data["Sgas"][0] out_dict["temp_c"][0] = mystar.data["T"][0] out_dict["dens_c"][0] = mystar.data["rho"][0] out_dict["omega"][0] = mystar.omega out_dict["B_c"][0] = np.mean(mystar.data["B"][:10]) out_dict["R"][0] = mystar.data["R"][-1] if keepstars: out_dict["stars"].append(copy.deepcopy(mystar)) else: out_dict["stars"].append(copy.deepcopy(mystar.data)) # Obtain tau_cc = tau_neutrino equality line td = rtc.timescale_data(max_axes=[1e12,1e12]) if r_in["S_old"]: ignition_line_f = td.get_tauneunuc_line() for i in range(len(r_in["S_arr"])): print "*************Star #{0:d}, entropy = {1:.3f}************".format(i, r_in["S_arr"][i]) # If we turn on S_old and, during the previous step, we passed the ignition line, start recording old entropy profiles # and passing them on to the next star. if r_in["S_old"] and mystar.data["T"][0] > ignition_line_f(mystar.data["rho"][0]): # print "Using previous entropy profile" # if r_in["rezero_Sold"]: # Bomb-proofing to keep extremely low entropy values from messing up integration # mystar.data["Sgas"][mystar.data["Sgas"] < 0.] = 0. myS_old = Star.sprof.entropy_profile(mystar.data["M"], mystar.data["Sgas"], mystar.data["v_conv_st"], spline_k=r_in["uvs_k"], spline_s=r_in["uvs_s"]) mystar.S_old = myS_old.S_old mystar.dS_old = myS_old.dS_old mystar.vconv_Sold = myS_old.vconv_Sold outerr_code = obtain_model(mystar, i, r_in, omega_warn=r_in["omega_warn"], verbose=verbose) if outerr_code: print "===== RUNAWAY.PY REPORTS OUTERR: ", outerr_code, "for star", i, "so will stop model making! =====" break if "R_nuc" not in mystar.data.keys(): # Obtain timescale info if it's not already printed. mystar.getconvection(td=td) mystar.gettimescales() out_dict["S_c"][i+1] = mystar.data["Sgas"][0] out_dict["temp_c"][i+1] = mystar.data["T"][0] out_dict["dens_c"][i+1] = mystar.data["rho"][0] out_dict["omega"][i+1] = mystar.omega out_dict["B_c"][i+1] = np.mean(mystar.data["B"][:10]) out_dict["R"][i+1] = mystar.data["R"][-1] if keepstars: out_dict["stars"].append(copy.deepcopy(mystar)) else: out_dict["stars"].append(copy.deepcopy(mystar.data)) return out_dict
def make_runaway(starmass=1.2*1.9891e33, mymag=False, omega=0., omega_run_rat=0.8, S_arr=10**np.arange(7.5,8.2,0.25), mintemp=1e5, mass_tol=1e-6, P_end_ratio=1e-8, densest=False, stop_mindenserr=1e-10, L_tol=1e-6, keepstars=False, simd_userot=True, simd_usegammavar=True, simd_usegrav=True, omega_crit_tol=1e-3, omega_warn=10., de_err_tol=[1e6, 1e7], verbose=True): """Obtains runaway of a star of some given mass, magnetic field, and rotation. Outputs an object (usually several hundred megs large) that includes run inputs as "run_inputs", as well as all stellar output curves (hence its size) under "stars". Arguments: starmass : wanted mass mymag : magnetic profile object. Defaults to false, meaning no magnetic field. omega : rigid rotation angular velocity. Defaults to 0 (non-rotating). If < 0, attempts to estimate break-up omega with self.getomegamax(), if >= 0, uses user defined value. S_arr : list of central entropy values in the runaway track mintemp : temperature floor, effectively switches from adiabatic to isothermal profile if reached mass_tol : fractional tolerance between mass wanted and mass produced by self.getstarmodel() P_end_ratio : ratio of P/P_c at which to terminate stellar integration densest : central density initial estimate for self.getstarmodel() stop_mindenserr : density floor, below which integration is halted. Default is set to 1e-10 to prevent it from ever being reached. Helmholtz sometimes has trouble below this 1e-8; try adjusting this value to eliminate inverter errors. L_tol : conservation of angular momentum error tolerance simd_userot : use Solberg-Hoiland deviation from adiabatic temperature gradient simd_usegammavar : use gamma = c_P/c_V index magnetic deviation from adiabatic temperature gradient simd_usegrav : use gravity magnetic devation from adiabatic temperature gradient omega_crit_tol : when using mystar.getomegamax(), absolute error tolerance for maximum omega omega_warn : stop integration within mystar.getrotatingstarmodel() if self.omega approaches omega_warn*omega_crit estimate. Defaults to 10 to prevent premature stoppage. de_err_tol : densities at which relaxed error tolerances kick in. verbose : report happenings within code """ # Save a few details about the magnetic field (though we'll need better records for the actual paper) try: mymagsave = np.array([float(mymag.fBfld_r(0)), float(mymag.fBfld_r(2e8))]) except: if verbose: print "Magnetic field not found! Hopefully this is what you wanted." mymagsave = False r_in = {"mass": starmass, "magprofile": mymagsave, "omega": omega, "omega_run_rat": omega_run_rat, "S_arr": S_arr, "mintemp": mintemp, "composition": "CO", "tog_coul": True, "simd_userot": simd_userot, "simd_usegammavar": simd_usegammavar, "simd_usegrav": simd_usegrav, "simd_suppress": False, "P_end_ratio": P_end_ratio, "ps_eostol": 1e-8, "fakeouterpoint": False, "stop_invertererr": True, "stop_mrat": 2., "stop_positivepgrad": True, "stop_mindenserr": stop_mindenserr, "densest": densest, "mass_tol": mass_tol, "L_tol": L_tol, "omega_crit_tol": omega_crit_tol, "omega_warn": omega_warn, "lowerr_tol": de_err_tol[0], "mederr_tol": de_err_tol[1]} if (omega != 0) or mymag: print "*************You want to make an MHD/rotating star; let's first try making a stationary pure hydro star!************" mymagzero = magprof.magprofile(None, None, None, None, blankfunc=True) hstar = Star.maghydrostar(r_in["mass"], max(5e6,mintemp), magprofile=mymagzero, omega=0., S_want=False, mintemp=r_in["mintemp"], composition=r_in["composition"], togglecoulomb=r_in["tog_coul"], simd_userot=r_in["simd_userot"], simd_usegammavar=r_in["simd_usegammavar"], simd_usegrav=r_in["simd_usegrav"], simd_suppress=r_in["simd_suppress"], P_end_ratio=r_in["P_end_ratio"], ps_eostol=r_in["ps_eostol"], fakeouterpoint=r_in["fakeouterpoint"], stop_invertererr=r_in["stop_invertererr"], stop_mrat=r_in["stop_mrat"], stop_positivepgrad=r_in["stop_positivepgrad"], stop_mindenserr=r_in["stop_mindenserr"], densest=r_in["densest"], mass_tol=r_in["mass_tol"], L_tol=r_in["L_tol"], omega_crit_tol=r_in["omega_crit_tol"], nreps=100, verbose=verbose) densest=0.9*hstar.data["rho"][0] print "*************Okay, let's make a low-temperature (possibly MHD/rotating) star************" mystar = Star.maghydrostar(r_in["mass"], max(5e6,mintemp), magprofile=mymag, omega=r_in["omega"], S_want=False, #Rest after this is identical to function call above mintemp=r_in["mintemp"], composition=r_in["composition"], togglecoulomb=r_in["tog_coul"], simd_userot=r_in["simd_userot"], simd_usegammavar=r_in["simd_usegammavar"], simd_usegrav=r_in["simd_usegrav"], simd_suppress=r_in["simd_suppress"], P_end_ratio=r_in["P_end_ratio"], ps_eostol=r_in["ps_eostol"], fakeouterpoint=r_in["fakeouterpoint"], stop_invertererr=r_in["stop_invertererr"], stop_mrat=r_in["stop_mrat"], stop_positivepgrad=r_in["stop_positivepgrad"], stop_mindenserr=r_in["stop_mindenserr"], densest=r_in["densest"], mass_tol=r_in["mass_tol"], L_tol=r_in["L_tol"], omega_crit_tol=r_in["omega_crit_tol"], nreps=100, verbose=verbose) # If we use a high-temperature mintemp, remove any S_arr if S_arr[0] < mystar.data["Sgas"][0]: i_S_arr = min(np.where(S_arr > mystar.data["Sgas"][0])[0]) S_arr = S_arr[i_S_arr:] r_in["S_arr"] = S_arr if r_in["omega"] < 0: print "FOUND critical Omega = {0:.3e}! We'll use {1:.3e} of this value for the runaway.".format(mystar.omega, r_in["omega_run_rat"]) r_in["omega_crit_foundinfirststep"] = mystar.omega mystar.omega *= r_in["omega_run_rat"] mystar.getstarmodel(densest=0.9*mystar.data["rho"][0], P_end_ratio=r_in["P_end_ratio"], ps_eostol=r_in["ps_eostol"]) if r_in["omega"]: if mystar.omega > mystar.getcritrot(max(mystar.data["M"]), mystar.data["R"][-1]): print "WARNING: exceeding estimated critical rotation! Consider restarting this run." r_in["L_original"] = mystar.getmomentofinertia(mystar.data["R"], mystar.data["rho"])[-1]*mystar.omega mystar.L_want = r_in["L_original"] # Store initial angular momentum for future use. out_dict = {"temp_c": np.zeros(len(r_in["S_arr"])+1), "dens_c": np.zeros(len(r_in["S_arr"])+1), "omega": np.zeros(len(r_in["S_arr"])+1), "B_c": np.zeros(len(r_in["S_arr"])+1), "S_c": np.zeros(len(r_in["S_arr"])+1), "R": np.zeros(len(r_in["S_arr"])+1), "stars": []} if "R_nuc" not in mystar.data.keys(): # Obtain timescale info if it's not already printed. mystar.gettimescales() out_dict["run_inputs"] = r_in if r_in["omega"] < 0: out_dict["omega_crit"] = r_in["omega_crit_foundinfirststep"] out_dict["S_c"][0] = mystar.data["Sgas"][0] out_dict["temp_c"][0] = mystar.data["T"][0] out_dict["dens_c"][0] = mystar.data["rho"][0] out_dict["omega"][0] = mystar.omega out_dict["B_c"][0] = np.mean(mystar.data["B"][:10]) out_dict["R"][0] = mystar.data["R"][-1] if keepstars: out_dict["stars"].append(copy.deepcopy(mystar)) else: out_dict["stars"].append(copy.deepcopy(mystar.data)) for i in range(len(r_in["S_arr"])): print "*************Star #{0:d}, entropy = {1:.3f}************".format(i, r_in["S_arr"][i]) outerr_code = obtain_model(mystar, i, r_in, omega_warn=r_in["omega_warn"], verbose=verbose) if outerr_code: if outerr_code == "nrepsnotconverged_err": print "===== RUNAWAY.PY REPORTS OUTERR: ", outerr_code, "but code hacked, so keep going! =====" else: print "===== RUNAWAY.PY REPORTS OUTERR: ", outerr_code, "so will stop model making! =====" break if "R_nuc" not in mystar.data.keys(): # Obtain timescale info if it's not already printed. mystar.gettimescales() out_dict["S_c"][i+1] = mystar.data["Sgas"][0] out_dict["temp_c"][i+1] = mystar.data["T"][0] out_dict["dens_c"][i+1] = mystar.data["rho"][0] out_dict["omega"][i+1] = mystar.omega out_dict["B_c"][i+1] = np.mean(mystar.data["B"][:10]) out_dict["R"][i+1] = mystar.data["R"][-1] if keepstars: out_dict["stars"].append(copy.deepcopy(mystar)) else: out_dict["stars"].append(copy.deepcopy(mystar.data)) return out_dict