def selfie2anime(): img_id = os.environ['id'] result_id = os.environ['result'] parser = get_parser() args = parser.parse_args("--phase test".split()) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: #sess.reuse_variables() gan = UGATIT(sess, args) # build graph gan.build_model() # download target img download_path = os.path.join(img_path, img_id) download_image(images_bucket, img_id, dest=download_path) dataset_tool.create_from_images(record_path, img_path, True) # os.remove(del_record) img = gan.infer(download_path) image_url = upload_image(img, result_id) return download_path, img
def test_default_argment(self): parser = main.get_parser().parse_args() self.assertEqual(parser.epoch, 100) self.assertEqual(parser.learning_rate, 0.0001) self.assertEqual(parser.train_rate, 0.8) self.assertEqual(parser.batch_size, 20) self.assertEqual(parser.l2, 0.05)
def main(): name = sys.argv[1] t = sys.argv[2] value = float(sys.argv[3]) is_int = bool(sys.argv[4]) training_data, testing_data, validation_data = load_data( "data4students.mat") #if is_int: # rand = np.random.random_integers(low, high, samples) #else: print("Testing param values for {}={}".format(name, value)) #if is_int: # params_in = [str(np.random.randint(2000)) for i in range(value)] #else: # params_in = [str(value)] parser = get_parser() params = parser.parse_args([ "--timestamp", str(t), "--lr_scheduler", name, "--decay_rate", str(value) ]) #params = parser.parse_args(["--timestamp", str(t), "--{}".format(name), str(value)]) train_and_report(training_data, validation_data, params)
def main(): if len(sys.argv) != 2: print("Please specify a path to a .mat file containing the testing data") return data = load_data(sys.argv[1]) parser = get_parser() params = parser.parse_args([]) model = Model(None, None, params) model.build() model.model.load_weights('trained_model.h5') predictions = test_network(model.model, data.data) print(predictions) correct = 0 for i, datum in enumerate(data.targets): datum = list(datum).index(1) print('Prediction for image ' + str(i) + ': ' + str(predictions[i]) + ', expected ' + str(datum)) correct += 1 if predictions[i] == datum else 0 print('Overall CR: ' + str(correct / len(predictions) * 100) + '%')
def get_parameter(): parser = entry.get_parser() parser.add_argument('--old', type=str, default='') parser.add_argument('--new', type=str, default='') parser.add_argument('--mapping_from', '--mf', type=str, default='') parser.add_argument('--mapping_to', '--mt', type=str, default='') parser.add_argument('--verbose_list', default='ratio,sep', type=str) args = parser.parse_args() if isinstance(args.verbose_list, str): args.verbose_list = [x.strip() for x in args.verbose_list.split(',')] if isinstance(args.keyword, str): args.keyword = [x.strip() for x in args.keyword.split(',')] return args
def test_command_sqs(): parser = get_parser() args = parser.parse_args('sqs --queues queue1 queue2'.split()) assert args.func == start_sqs assert args.queues == ['queue1', 'queue2']
def test_command_sqs(): parser = get_parser() args = parser.parse_args('es --ip ip_add --domain foo'.split()) assert args.func == start_es assert args.ip == 'ip_add' assert args.domain == 'foo'