Пример #1
0
 def get(self, name, flag):
     try:
         if flag == flag:
             for config,cfgval in configuration_counts.copy().items():
                 if config != name:
                     configuration_counts.pop(config)
             con = configuration_counts
             return Response(
             response = json.dumps(run_main(con,flag),default=str), 
             status=200,
             mimetype="application/json"
             )
         elif flag != flag:
             for config,cfgval in configuration_counts.copy().items():
                 if config != name:
                     configuration_counts.pop(config)
             con = configuration_counts
             return Response(
             response = json.dumps(run_main(con,flag),default=str), 
             status=200,
             mimetype="application/json"
             )
     except Exception as e:
         return Response(
         response = json.dumps(
             {"message":"Check Your URL Please!!"},default=str), 
             status=404,
             mimetype="application/json"
             )
Пример #2
0
 def get(self, name, flag):
     try:
         if flag == flag:
             configuration_counts = cfg.configuration_count
             dict1 = {}
             for config, cfgval in list(configuration_counts.items()):
                 if config == name:
                     con = configuration_counts[name]
                     dict1[name] = con
             return Response(
                 response=json.dumps(run_main(dict1, flag), default=str),
                 status=200,
                 mimetype="application/json",
             )
         elif flag != flag:
             for config, cfgval in configuration_counts.copy().items():
                 if config != name:
                     configuration_counts.pop(config)
             con = configuration_counts
             return Response(response=json.dumps(run_main(con, flag),
                                                 default=str),
                             status=200,
                             mimetype="application/json")
     except Exception as e:
         print(e)
         return Response(
             response=json.dumps(
                 {
                     "status": 404,
                     "message": "Check Your URL Please!!"
                 },
                 default=str),
             status=404,
             mimetype="application/json",
         )
Пример #3
0
 def get(self, name, flag):
     try:
         configuration_counts = cfg.configuration_count
         dict1 = {}
         for config, cfgval in list(configuration_counts.items()):
             if config == name:
                 con = configuration_counts[name]
                 dict1[name] = con
         message = mn.message
         json_response = {
             "message": message,
             "status": mn.status,
             "records": run_main(dict1, flag),
         }
         return Response(
             response=json.dumps(json_response, default=str),
             mimetype="application/json",
         )
         # return Response(
         #     response=json.dumps(run_main(dict1, flag), default=str),
         #     status=200,
         #     mimetype="application/json",
         # )
     except Exception as e:
         print(e)
         return Response(
             response=json.dumps(
                 {"status": 404, "message": "Check Your URL Please!!"}, default=str
             ),
             status=404,
             mimetype="application/json",
         )
Пример #4
0
def upload_pdf():

    if request.method == "POST":

        if request.files:

            if "filesize" in request.cookies:

                if not allowed_pdf_filesize(request.cookies["filesize"]):
                    print("Filesize exceeded maximum limit")
                    flash('File size exceeds maximum limit', 'danger')
                    return redirect(request.url)

                pdf = request.files["pdf"]

                if pdf.filename == "":
                    print("No filename")
                    flash('No file uploaded or invalid file name', 'danger')
                    return redirect(request.url)

                if allowed_pdf(pdf.filename):
                    global filename
                    filename = secure_filename(pdf.filename)

                    pdf.save(os.path.join(
                        app.config["PDF_UPLOADS"], filename))

                    print("PDF saved")

                    file_path = os.path.join(
                        app.config["PDF_UPLOADS"], filename)
                    print(file_path)
                    print(filename)

                    main.run_main(file_path, filename)

                    return render_template('/download_csv.html', data="static/csv-json-txt/" + filename[:-4] + "_" + "student_data.json")

                else:
                    print("That file extension is not allowed")
                    flash('Please upload a PDF.', 'danger')
                    return redirect(request.url)

    return render_template("/upload_pdf.html")
Пример #5
0
 def get(self, flag):
     try:
         if flag == flag:
             run = run_main(configuration_counts, flag)
             return Response(
                 response=json.dumps(run, default=str),
                 status=200,
                 mimetype="application/json",
             )
         elif flag != flag:
             run = run_main(configuration_counts, flag)
             return Response(
                 response=json.dumps(run, default=str),
                 status=200,
                 mimetype="application/json",
             )
     except Exception as e:
         print(e)
         return Response(
             response=json.dumps(e, default=str),
             status=404,
             mimetype="application/json",
         )
Пример #6
0
def main_plot():
    """The view for rendering the scatter chart"""
    fs_function = []
    number = int(session['form']['number'])
    dataset_name = session['form']['dataset']
    method = session['form']['method']
    score_name = session['form']['score']
    if session['form'].__contains__('pearson'):
        fs_function.append(session['form']['pearson'])
    if session['form'].__contains__('fisher'):
        fs_function.append(session['form']['fisher'])
    if session['form'].__contains__('greedy'):
        fs_function.append(session['form']['greedy'])
    img = run_main(method, fs_function, score_name, number,dataset_name)
    return send_file(img, mimetype='image/png', cache_timeout=0)
Пример #7
0
 def get(self, flag):
     try:
         run = run_main(configuration_counts, flag)
         message = mn.message
         json_response = {"message": message, "status": mn.status, "records": run}
         return Response(
             response=json.dumps(json_response, default=str),
             mimetype="application/json",
         )
     except Exception as e:
         print(e)
         return Response(
             response=json.dumps(e, default=str),
             status=404,
             mimetype="application/json",
         )
Пример #8
0
def test_run_main(spark_session: SparkSession) -> None:

    configuration = Configuration(
        source_folder='test_data_source',
        db_name='schwacke_test',
        host='localhost',
        port=27017,
        current_date=str(datetime.now().date()),
        current_timestamp=str(int(datetime.now().timestamp())),
    )

    mode_folder = Path(Path.cwd(), configuration.source_folder)
    for path in Path(mode_folder, 'archive').iterdir():
        if path.is_file():
            copy(str(path), str(Path(mode_folder)))

    tmp_table, mongo_collection = run_main(spark_session, configuration)

    try:
        result_from_file = tmp_table.read_from_file()
        result_from_db = mongo_collection.read_from_mongodb()
        for dict in result_from_db:
            dict.pop('_id')
        with Path(mode_folder, 'control_output.json').open(
            'r'
        ) as file_result:
            control_result = [loads(row) for row in file_result]

    finally:
        rmtree(
            Path(
                tmp_table.tmp_table_folder,
                f'{tmp_table.configuration.current_date}'
                f'_{tmp_table.configuration.current_timestamp}',
            ),
            ignore_errors=True,
        )
        mongo_collection.drop_collection_mongodb()

    assert result_from_db == control_result
    assert result_from_file == control_result
Пример #9
0
__author__ = 'Jrudascas'

import warnings
warnings.filterwarnings("always")

import main as main
import definitions as d
import time

t = time.time()

main.run_main(d.path_input, d.path_output)

print("Total duration: " + str(time.time() - t) + " sec")
Пример #10
0
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

import tensorflow as tf

from main import run_main

if __name__ == "__main__":
    assets = os.path.join(tf.resource_loader.get_data_files_path(),
                          'assets.zip')
    run_main(assets)
Пример #11
0
def __main():
    """Main function for setup.py. Contains and handles the menu loop."""
    
    print """
--------------------------------------------------------------------------------
    
                             Setup for PiPark, 2014
    
================================================================================
    """
    
    # continually loop menu unitl user chooses 'q' to quit
    setup_image_location = "./images/setup.jpeg"
    while True:
        user_choice = __menu_choice()
        
        if user_choice == '1':
            # initialise camera and start pi camera preview
            camera = imageread.setup_camera()
            camera.start_preview()
            
            print "INFO: Setup image save location:", str(setup_image_location)
            print "INFO: Camera preview initiated."
            print ""
            
            # when user presses enter, take a new setup image. Then ask the user to confirm or
            # reject the image. If image is rejected, take a new image.
            while True:
                raw_input("When ready, press ENTER to capture setup image.")
                camera.capture(setup_image_location)
                user_input = raw_input("Accept image (y/n)? > ")
                
                if user_input.lower() in ('y', "yes"): break
                    
            # picture saved, end preview
            camera.close()
            print ""
            print "INFO: Setup image has been saved to:", str(setup_image_location)
            print "INFO: Camera preview closed."
        
        
        elif user_choice == '2':
            # check setup image exists, if not print error directing to option 1
            try:
                setup_image = Image.open(setup_image_location)
            except:
                print "ERROR: Setup image does not exist. Select option 1 to"
                print "create a new setup image."
            
            # setup image exists, so open GUI window allowing selection of spaces and
            # reference areas
            print """
When the window opens use the mouse to mark parking spaces and 3 reference
areas. Press T to toggle between marking parking spaces and reference areas and
the numbers 1 - 0 to mark new areas.
            """
            raw_input("\nPress ENTER to continue...\n")
            setup_selectarea.main(setup_image)
        
        
        elif user_choice == '3':
            # attempt to import the setup data and ensure 'boxes' is a list. If fail,
            # return to main menu prompt.
            try:
                import setup_data
                boxes = setup_data.boxes
                if not isinstance(boxes, list): raise ValueError()
            except:
                print "ERROR: Setup data does not exist. Please run options 1 and 2 first."
                continue
                
            # attempt to import the server senddata module. If fail, return to main menu
            # prompt.
            try:
                import senddata
            except:
                print "ERROR: Could not import send data file."
                continue
            
            # deregister all areas associated with this pi (start fresh)
            out = senddata.deregister_pi()
            
            try:
                out['error']
                print "ERROR: Error in connecting to server. Please update settings.py."
                continue
            except:
                pass
            
            # register each box on the server
            for box in boxes:
                if box[1] == 0:
                    senddata.register_area(box[0])
                    print "INFO: Registering area", box[0], "on server database."
                    
            print "\nRegistration complete."
        
        
        elif user_choice == '4':
            print "This will complete the setup and run the main PiPark program."
            user_input = raw_input("Continue and run the main program? (y/n) >")
            if user_input.lower in ('y', 'yes'):
                main.run_main()
                break
                                                 
        elif user_choice.lower() in ('h', "help"):
            print """
Welcome to PiPark setup, here's a quick run-through of the steps to successfully
setup your PiPark unit.
            
  1) Ensure that the PiPark unit is mounted suitable above the cark park so that
     the PiPark's camera is able to look down with a clear view upon the spaces
     that are required to be monitored.
            
  2) At the main menu prompt of this setup program enter option '1' to fine tune
     the direction of the camera so that it is clearly able to view the spaces.
     When you have finalised the position of the camera press ENTER to capture a
     setup image. If everything is correct and you do not wish to recapture the
     setup image, type 'y' or 'yes' at the prompt to continue the setup program.
     If you wish to recapture the setup image, type 'n' or 'no' at the prompt.
     
     Note: The setup image does not require the car park to be empty.

  3) Once back at the main menu prompt, enter option '2' to open up the setup
     GUI, which will open a new window allowing you to mark parking space areas
     and reference areas on the setup image that was captures as part of step 2.
     
     When the window has opened use the mouse to mark start and end corners of
     rectangles, which will represent the areas to be processed by the main
     program. To toggle between marking reference areas and parking space areas
     press 'T'. Blue areas represent parking spaces, and red areas represent
     reference areas.
     
     Currently up to ten areas can be marked, using the number keys from 1 - 0.
     There must be exactly 3 reference areas (RED) marked on the setup image
     and at least 1 parking space.
     
     When all areas have been marked on the image press 'O' to output the marked
     areas' co-ordinates to a file and close the window to continue completing
     the setup.
     
     Controls Summary:
       T -- Toggle between reference areas (RED) and parking spaces (BLUE).
       C -- Clear all marked areas.
       O -- Output the reference areas to a file.
       1 to 0 -- Change area ID numbers.

  4) The final step to completing the setup is to choose option '3' from the 
     main menu prompt. When selected the parking spaces will be registered to
     the server, and can now be viewed on the website.

  5) The setup is now complete; at the main menu prompt type 'q' or 'quit' to
     terminate the setup program. Alternatively, choose option 3 to immediately
     run the main PiPark program.
            """
            
            
        elif user_choice.lower() in ('q', "quit"):
            print ""
            break
        
        
        else:
            print "\nERROR: Invalid menu choice.\n"
Пример #12
0
                continue
            if comm.Get_rank() == 0:
                timer.tic()
            num_labels_list = list(
                itertools.product(c.num_labels, range(c.num_splits)))
            no_viz = False
            pool.map(mpi_run_main_args,
                     [n + (
                         no_viz,
                         c,
                     ) for n in num_labels_list])
            pool.close()

            if comm.Get_rank() == 0:
                print 'TOTAL TIME:'
                timer.toc()
                main.run_main(configs=c)
    else:
        assert False, 'Use MPI instead!'
        if use_multiprocessing_pool:
            pool = multiprocessing_utility.LoggingPool(processes=pool_size)
            pool.map(launch_subprocess_args, num_labels_list)
        else:
            for i in num_labels_list:
                launch_subprocess_args(i)
        comm = MPI.COMM_WORLD
        if comm.Get_rank() == 0:
            print 'TOTAL TIME:'
            timer.toc()
            main.run_main()
Пример #13
0
__author__ = 'Aubrey'


import sys
from operator import add
from pyspark import SparkContext
from pyspark import SparkConf
from main import run_main

if __name__ == "__main__":
    try:
        sc
    except NameError:
        try:
            spark_conf = SparkConf()
            spark_conf.set("spark.executor.memory", "8g")
            spark_conf.set("spark.eventLog.enable", "True")
            spark_conf.set("spark.logConf", "true")
            spark_conf.set("spark.default.parallelism", "5")
            spark_conf.set("spark.task.maxFailure", "4")
            # spark_conf.set("spark.storage.memoryFraction", ".2")
            sc = SparkContext(conf=spark_conf, appName="CASP-ML")
        except:
            print "sc doesn't exist AND cannot create new SparkContext!"
            print "Did you pass globals() to execfile()?"
    else:
        sc
    num_jobs = 10
    run_main(num_jobs, sc)
Пример #14
0
    def body(self):
        # execute st calls for body section
        # a header for this section
        sub_title = 'Application Experiment for Advanced Deep Learning'
        st.markdown(
            f"<h3 style='text-align: center; color: black;font-family:courier;'>{sub_title}</h3>",
            unsafe_allow_html=True)
        # display some overview graphs
        my_expander = st.beta_expander(
            "Project Methods and Results (Click to Hide or Show)",
            expanded=False)
        with my_expander:
            st.markdown(
                "<h2 style='text-align: center; color: black;'> * * * </h2>",
                unsafe_allow_html=True)
            narrative_introduction()

            st.markdown(
                "<h2 style='text-align: center; color: black;'> * * * </h2>",
                unsafe_allow_html=True)
            st.header('Model Overview')
            lstm_math()

            st.markdown(
                "<h2 style='text-align: center; color: black;'> - - </h2>",
                unsafe_allow_html=True)
            arima_math()

            st.markdown(
                "<h2 style='text-align: center; color: black;'> - - </h2>",
                unsafe_allow_html=True)
            prophet_math()

            st.markdown(
                "<h2 style='text-align: center; color: black;'> * * * </h2>",
                unsafe_allow_html=True)
            st.header('Data Preparation')
            d_col1, d_col2 = st.beta_columns(2)
            d_col1.write(
                'Scale prices and interpolate sentiment scores with spline.')
            d_col1.image(self.data_1)
            d_col2.write(
                'Data with varying degrees of missing values and date ranges.')
            d_col2.image(self.data_2)

            st.markdown(
                "<h2 style='text-align: center; color: black;'> * * * </h2>",
                unsafe_allow_html=True)
            st.header('Data Sequences')
            st.write('Sliding Sequences of Prices')
            st.image(self.seq_1)
            st.write('Sliding Sequences of Prices and Sentiment Data')
            st.image(self.seq_2)

            st.markdown(
                "<h2 style='text-align: center; color: black;'> * * * </h2>",
                unsafe_allow_html=True)
            st.header('Results')
            st.write('Baseline Experiments')
            res1 = st.beta_columns(2)
            res1[0].write('ARIMA train-predict results.')
            res1[0].image(self.results1)
            res1[1].write('FB Prophet train-predict results.')
            res1[1].image(self.results2)

            st.write('LSTM Experiments')
            res2 = st.beta_columns(2)
            res2[0].write('LSTM 1 - Stock Price Only')
            res2[0].image(self.results31)
            res2[0].image(self.results32)
            res2[1].write('LSTM 2 - Stock Price With Sentiment')
            res2[1].image(self.results41)
            res2[1].image(self.results42)

            st.markdown(
                "<h2 style='text-align: center; color: black;'> * * * </h2>",
                unsafe_allow_html=True)
            st.header('LSTM Notes')
            st.write(
                'Set default epochs to 100 with multiple early stopping conditions.'
            )
            st.write(
                'High variance in stock prices make prediction accuracy difficult.'
            )

            st.markdown(
                "<h2 style='text-align: center; color: black;'> * * * </h2>",
                unsafe_allow_html=True)
            st.header('Analysis of Price and Sentiment Variance')
            df = pd.read_csv(self.sample_chart)
            make_scatter(
                df=df,
                title=
                'High-level Results for Error by Sentiment and Price Variance')
            make_histogram(filename=self.sample_chart)

            st.markdown(
                "<h2 style='text-align: center; color: black;'> * * * </h2>",
                unsafe_allow_html=True)
            narrative_conclusion()
            st.markdown(
                "<h2 style='text-align: center; color: black;'> * * * </h2>",
                unsafe_allow_html=True)

        # makes a sidebar selection in index
        experiment_mode = exp_mode()

        debug_type = debug_mode()

        demo_run_mode = None

        tickers = []

        if experiment_mode == 'demo':
            tickers = ['Amazon']
            run_modes_selection = default_runs()
            st.write('Default Run Modes set to:', run_modes_selection)
            if run_modes_selection == 'Baseline (ARIMA and FB Prophet)':
                demo_run_mode = ['arima', 'prophet']
            elif run_modes_selection == 'Featured (LSTMs)':
                demo_run_mode = ['lstm1', 'lstm2']
        else:
            # dummy data directories and paths
            try:
                historical_news_filename = 'news.json'
                class_data_folder = os.sep.join(
                    [os.environ['PWD'], 'data', 'class_data'])
                historical_news_path = os.sep.join(
                    [class_data_folder, historical_news_filename])
                tickers = get_stock_tickers(historical_news_path)
            except:
                pass

        st.write('Experiment Configuration:')
        st.write('Experiment Mode:', experiment_mode)
        st.write('Debug Mode:', debug_type)
        st.write('Tickers:', len(tickers))

        run_exp = st.button('Run!')

        results_df = None

        if run_exp:
            if not debug_type:
                st.write('Running with Multiprocessor')

            with st.spinner('Running The Experiment!...'):
                if demo_run_mode:
                    results_df = run_main(experiment_mode=experiment_mode,
                                          tickers=tickers,
                                          debug_mode=debug_type,
                                          demo_run_mode=demo_run_mode)

                else:
                    results_df = run_main(experiment_mode=experiment_mode,
                                          tickers=tickers,
                                          debug_mode=debug_type)

            st.success('Yay! Made Predictions.')

            st.write('Check data/ and figures/ for results')

        if results_df is not None:
            st.dataframe(results_df)
            make_scatter(df=results_df, title='Your Experiment Results')
            st.balloons()
Пример #15
0
def __main():
    
    
    setup_image_location = "./images/setup.jpeg"
    while True:
        user_choice = __menu_choice()
        
        if user_choice == '1':
            
            camera = imageread.setup_camera()
            camera.start_preview()
            
            print "INFO: Setup image save location:", str(setup_image_location)
            print "INFO: Camera preview initiated."
            print ""
            
            
            while True:
                raw_input("When ready, press ENTER to capture setup image.")
                camera.capture(setup_image_location)
                user_input = raw_input("Accept image (y/n)? > ")
                
                if user_input.lower() in ('y', "yes"): break
                    
            # picture saved, end preview
            camera.close()
            print ""
            print "INFO: Setup image has been saved to:", str(setup_image_location)
            print "INFO: Camera preview closed."
        
        
        elif user_choice == '2':
            
            try:
                setup_image = Image.open(setup_image_location)
            except:
                print "ERROR: Setup image does not exist. Select option 1 to"
                print "create a new setup image."
            
        
            
            raw_input("\nPress ENTER to continue...\n")
            setup_selectarea.main(setup_image)
        
        
        elif user_choice == '3':
           
            try:
                import setup_data
                boxes = setup_data.boxes
                if not isinstance(boxes, list): raise ValueError()
            except:
                print "ERROR: Setup data does not exist. Please run options 1 and 2 first."
                continue
                
            # attempt to import the server senddata module. If fail, return to main menu
            # prompt.
            try:
                import senddata
            except:
                print "ERROR: Could not import send data file."
                continue
            
            # deregister all areas associated with this pi (start fresh)
            out = senddata.deregister_pi()
            
            try:
                out['error']
                print "ERROR: Error in connecting to server. Please update settings.py."
                continue
            except:
                pass
            
            # register each box on the server
            for box in boxes:
                if box[1] == 0:
                    senddata.register_area(box[0])
                    print "INFO: Registering area", box[0], "on server database."
                    
            print "\nRegistration complete."
        
        
        elif user_choice == '4':
            print "This will complete the setup and run the main PiPark program."
            user_input = raw_input("Continue and run the main program? (y/n) >")
            if user_input.lower in ('y', 'yes'):
                main.run_main()
                break
                                                 
        elif user_choice.lower() in ('h', "help"):
        
            
            
        elif user_choice.lower() in ('q', "quit"):
            print ""
            break
        
        
        else:
            print "\nERROR: Invalid menu choice.\n"
Пример #16
0
def read_data():
    main.run_main()
Пример #17
0
#!/usr/bin/env python 
# -*- coding:utf-8 -*-
import main

if __name__ == '__main__':
    main.run_main("forward_selection", ["pearson", "fisher", "greedy"], "auc")
Пример #18
0
# -*- coding: utf-8 -*-

from main import run_main
from subprocess import call
import os
import time

start_time = time.clock()

colmap_dir = '/user_data/colmap/build/src/exe/'
print(colmap_dir)

# First Run
print('Iteration 1')
project_directory = run_main('./configFiles/configMuscatAWSLoop1.yml')

# COLMAP
print('Starting Semi-Dense Reconstruction')
call([
    colmap_dir + '/feature_extractor', '--database_path',
    project_directory + '/database.db', '--image_path',
    project_directory + '/Selected/small', '--SiftGPUExtraction.index', '0'
])
call([
    colmap_dir + '/exhaustive_matcher', '--database_path',
    project_directory + '/database.db', '--SiftMatching.use_gpu', '1'
])

if not os.path.exists(project_directory + '/sparse'):
    os.makedirs(project_directory + '/sparse')
Пример #19
0
        comm = MPI.COMM_WORLD
        for c in batch_configs.config_list:
            if results_exist(c):
                if comm.Get_rank() == 0:
                    print 'Skipping: ' + c.results_file
                continue
            if comm.Get_rank() == 0:
                timer.tic()
            num_labels_list = list(itertools.product(c.num_labels, range(c.num_splits)))
            no_viz = False
            pool.map(mpi_run_main_args, [n + (no_viz, c, ) for n in num_labels_list])
            pool.close()

            if comm.Get_rank() == 0:
                print 'TOTAL TIME:'
                timer.toc()
                main.run_main(configs=c)
    else:
        if use_multiprocessing_pool:
            pool = multiprocessing_utility.LoggingPool(processes=pool_size)
            pool.map(launch_subprocess_args, num_labels_list)
        else:
            for i in num_labels_list:
                launch_subprocess_args(i)
        comm = MPI.COMM_WORLD
        if comm.Get_rank() == 0:
            print 'TOTAL TIME:'
            timer.toc()
            main.run_main()

Пример #20
0
import main

main.run_main()
Пример #21
0
    features_list_group = []

    if os.path.isdir(path_input_group):
        for subject in sorted(os.listdir(path_input_group)):
            path_input_subject = os.path.join(path_input_group, subject)
            if os.path.isdir(path_input_subject):

                path_output_study = os.path.join(
                    d.path_output, u.to_extract_foldername(d.path_input))
                if not (os.path.exists(path_output_study)):
                    os.mkdir(path_output_study)

                path_output_group = os.path.join(path_output_study, group)
                if not (os.path.exists(path_output_group)):
                    os.mkdir(path_output_group)

                path_output_subject = os.path.join(path_output_group, subject)
                if not (os.path.exists(path_output_subject)):
                    os.mkdir(path_output_subject)

                features_list = m.run_main(path_input_subject,
                                           path_output_subject + '/')

                features_list_group.append(features_list)

    np.savetxt(path_output_group + 'features.out',
               np.array(features_list_group),
               delimiter=' ',
               fmt='%s')
Пример #22
0
def gen_sub(body: GenSub):
    meeting = body.meeting
    output = run_main(meeting)
    return {
        "path": output,
    }
Пример #23
0
    ]
    args['comparisons_per_hit'] = 1  #len(args['onboarding_tasks'])
    args['block_on_onboarding'] = True
    args['onboarding_threshold'] = 1.0

    # HIT options
    # add 1 for onboarding task HIT
    # Manager workers by creating HITS until num_conversations is reached, including
    # onboarding tasks
    #args['num_conversations'] = 10 + (len(args['model_comparisons']) * args['pairs_per_matchup'] * args['annotations_per_pair'])
    args['num_conversations'] = math.ceil(
        (len(args['model_comparisons']) * args['pairs_per_matchup'] *
         args['annotations_per_pair']) * 1.33)
    args['assignment_duration_in_seconds'] = 1800
    args['reward'] = 0.15  # in dollars
    args['bonus_reward'] = 0.85  # in dollars
    args['max_hits_per_worker'] = 100

    # Additional args that can be set - here we show the default values.
    # For a full list, refer to run.py & the ParlAI/parlai/params.py
    # args['seed'] = 42
    args['verbose'] = False
    args['is_debug'] = False

    return args


if __name__ == '__main__':
    args = set_args()
    run_main(args, task_config)
Пример #24
0
    # sys.exit()

    # Each item in the list 'list_doc_score' will contain an ordered dictionary with the doc scores for each topic in the form {docid : docscore} .
    list_doc_score = []

    # Loop through all the topics in the topic_list.
    for topic in topic_list:

        # Get directory path for the seed document of the current topic.
        seedDoc_filepath = os.path.join(seedDoc_folder, topic)

        # Implement CAL with Supervised Machine Learning for the current topic & receive the prediction scores for the documents of the current topic.
        list_doc_score.append(
            run_main(projDir, seedDoc_filepath, qrels_filepath, tfidf_dict,
                     vocab_idx_dict, topic_docid_label, clf, tfidf_sp,
                     out_file_features, docid_idx_dict, topic,
                     qrels_content_filepath, idf_dict, vocab_idx_dict_2,
                     cur_idx, total_words, idf_word_dict,
                     dict_initialScoreRankingResults))

    LambdaParam_list = [
        0, 0.4, 0.5, 1
    ]  # [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
    list_doc_score_copies = [None] * len(LambdaParam_list)

    # Assign for each item of the list a copy of the list_doc_score.
    for i in range(len(LambdaParam_list)):
        list_doc_score_copies[i] = list_doc_score

    # Do a Lambda parameter sweep and write results.
    for idx, LambdaParam in enumerate(LambdaParam_list):