def start(args): """ Create all required interfaces and start the application. """ args = vars(args) log.debug('Command line arguments: %s' % args) init(**args) if args.get('create_user'): db.users.insert({ 'username': args.get('create_user'), 'hash': sha.sha(getpass.getpass()).hexdigest() }) return log.info('Starting alfred {0}'.format(__version__)) signal.signal(signal.SIGINT, signalHandler) # Starting all the stuffs manager.start() # persistence.start() ruleHandler.loadRules(os.path.join(os.path.dirname(__file__), 'rules')) ruleHandler.start() # Sends heartbeats sys.startTime = time.asctime() signal.signal(signal.SIGALRM, heartbeat) heartbeat(signal.SIGALRM, None) # Let's have an interface :) webserver.start(args.get('client_path'))
def start(args): """ Create all required interfaces and start the application. """ args = vars(args) log.debug('Command line arguments: %s' % args) init(**args) if args.get('create_user'): db.users.insert({'username': args.get( 'create_user'), 'hash': sha.sha(getpass.getpass()).hexdigest()}) return log.info('Starting alfred {0}'.format(__version__)) signal.signal(signal.SIGINT, signalHandler) # Starting all the stuffs manager.start() # persistence.start() ruleHandler.loadRules(os.path.join(os.path.dirname(__file__), 'rules')) ruleHandler.start() # Sends heartbeats sys.startTime = time.asctime() signal.signal(signal.SIGALRM, heartbeat) heartbeat(signal.SIGALRM, None) # Let's have an interface :) webserver.start(args.get('client_path'))
import manager import item manager.start()
""" Supervised Learning on generated training data. """ import multiprocessing as mp import os import sys import keras.backend as K _PATH_ = os.path.dirname(os.path.dirname(__file__)) import memory_saving_gradients """ Uncomment the following line if your model doesn't fit in your gpu memory. Training will be a bit slower but you will be able to use bigger networks. To learn more about : https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9 """ K.__dict__["gradients"] = memory_saving_gradients.gradients_memory if _PATH_ not in sys.path: sys.path.append(_PATH_) if __name__ == "__main__": mp.set_start_method('spawn') sys.setrecursionlimit(10000) import manager manager.start(worker="opt", config_type="normal")
from selenium import webdriver from selenium.webdriver.firefox.firefox_binary import FirefoxBinary import manager import os if __name__ == '__main__': binary = FirefoxBinary( r'C:\Program Files (x86)\Mozilla Firefox\firefox.exe') driver = webdriver.Firefox(firefox_binary=binary) try: if not os.path.isfile('settings.py'): raise Exception('Not found settings!') manager.start(driver) finally: driver.quit()
""" Make to networks compete against each other. """ import multiprocessing as mp import os import sys _PATH_ = os.path.dirname(os.path.dirname(__file__)) if _PATH_ not in sys.path: sys.path.append(_PATH_) if __name__ == "__main__": mp.set_start_method('spawn') sys.setrecursionlimit(10000) import manager white_model_path = "data/model/last" black_model_path = "data/model/old" # model_1 is white, model_2 plays as black player manager.start(worker="duel", config_type="normal", model_1_path=white_model_path, model_2_path=black_model_path, deterministic=False)
import multiprocessing as mp import os import sys import keras.backend as K import memory_saving_gradients _PATH_ = os.path.dirname(os.path.dirname(__file__)) if _PATH_ not in sys.path: sys.path.append(_PATH_) if __name__ == "__main__": mp.set_start_method('spawn') sys.setrecursionlimit(10000) import manager # Alterning self play, training and evaluation phases while True: # Generates pgn files by competing best network against itself manager.start(worker="self", config_type="normal") tmp_gradients = K.__dict__["gradients"] K.__dict__["gradients"] = memory_saving_gradients.gradients_memory for _ in range(2): # Continue training network on most recent pgn files manager.start(worker="opt", config_type="normal", rl=True) K.__dict__["gradients"] = tmp_gradients # Evaluates last network against the best and replace it if stronger manager.start(worker="eval", config_type="normal")
import os import sys from dotenv import load_dotenv, find_dotenv if find_dotenv(): load_dotenv(find_dotenv()) _PATH_ = os.path.dirname(os.path.dirname(__file__)) if _PATH_ not in sys.path: sys.path.append(_PATH_) if __name__ == "__main__": import manager sys.exit(manager.start())
from manager import start start(True)