Пример #1
0
    def transform(self, X):
        """Apply transform to covariances

        Parameters
        ----------
        covs: list of array
            list of covariance matrices, shape (n_rois, n_rois)

        Returns
        -------
        list of array, transformed covariance matrices,
        shape (n_rois * (n_rois+1)/2,)
        """
        covs = [self.cov_estimator_.fit(x).covariance_ for x in X]
        covs = spd_mfd.my_stack(covs)
        if self.kind == 'tangent':
            covs = [spd_mfd.logm(self.whitening_.dot(c).dot(self.whitening_))
                    for c in covs]
        elif self.kind == 'precision':
            covs = [spd_mfd.inv(g) for g in covs]
        elif self.kind == 'partial correlation':
            covs = [prec_to_partial(spd_mfd.inv(g)) for g in covs]
        elif self.kind == 'correlation':
            covs = [cov_to_corr(g) for g in covs]
        else:
            raise ValueError("Unknown connectivity measure.")

        return np.array([sym_to_vec(c) for c in covs])
Пример #2
0
def test_inv():
    """Testing inv function"""
    m = my_mfd.random_spd(41)
    m_inv = my_mfd.inv(m)
    assert_array_almost_equal(m.dot(m_inv), np.eye(41))