Пример #1
0
    def initialize(self, f_cur, img_cur):

        if self.num_failures > kNumOfFailuresAfterWichNumMinTriangulatedPointsIsHalved:
            self.num_min_triangulated_points = 0.5 * Parameters.kInitializerNumMinTriangulatedPoints
            self.num_failures = 0
            Printer.orange(
                'Initializer: halved min num triangulated features to ',
                self.num_min_triangulated_points)

        # prepare the output
        out = InitializerOutput()
        is_ok = False

        #print('num frames: ', len(self.frames))

        # if too many frames have passed, move the current idx_f_ref forward
        # this is just one very simple policy that can be used
        if self.f_ref is not None:
            if f_cur.id - self.f_ref.id > kMaxIdDistBetweenIntializingFrames:
                self.f_ref = self.frames[-1]  # take last frame in the buffer
                #self.idx_f_ref = len(self.frames)-1  # take last frame in the buffer
                #self.idx_f_ref = self.frames.index(self.f_ref)  # since we are using a deque, the code of the previous commented line is not valid anymore
                #print('*** idx_f_ref:',self.idx_f_ref)
        #self.f_ref = self.frames[self.idx_f_ref]
        f_ref = self.f_ref
        #print('ref fid: ',self.f_ref.id,', curr fid: ', f_cur.id, ', idxs_ref: ', self.idxs_ref)

        # append current frame
        self.frames.append(f_cur)

        # if the current frames do no have enough features exit
        if len(f_ref.kps) < self.num_min_features or len(
                f_cur.kps) < self.num_min_features:
            Printer.red('Inializer: ko - not enough features!')
            self.num_failures += 1
            return out, is_ok

        # find keypoint matches
        idxs_cur, idxs_ref = match_frames(f_cur, f_ref,
                                          kFeatureMatchRatioTestInitializer)

        #print('|------------')
        #print('deque ids: ', [f.id for f in self.frames])
        #print('initializing frames ', f_cur.id, ', ', f_ref.id)
        #print("# keypoint matches: ", len(idxs_cur))

        Trc = self.estimatePose(f_ref.kpsn[idxs_ref], f_cur.kpsn[idxs_cur])
        Tcr = inv_T(Trc)  # Tcr w.r.t. ref frame
        f_ref.update_pose(np.eye(4))
        f_cur.update_pose(Tcr)

        # remove outliers from keypoint matches by using the mask computed with inter frame pose estimation
        mask_idxs = (self.mask_match.ravel() == 1)
        self.num_inliers = sum(mask_idxs)
        #print('# keypoint inliers: ', self.num_inliers )
        idx_cur_inliers = idxs_cur[mask_idxs]
        idx_ref_inliers = idxs_ref[mask_idxs]

        # create a temp map for initializing
        map = Map()
        f_ref.reset_points()
        f_cur.reset_points()

        #map.add_frame(f_ref)
        #map.add_frame(f_cur)

        kf_ref = KeyFrame(f_ref)
        kf_cur = KeyFrame(f_cur, img_cur)
        map.add_keyframe(kf_ref)
        map.add_keyframe(kf_cur)

        pts3d, mask_pts3d = triangulate_normalized_points(
            kf_cur.Tcw, kf_ref.Tcw, kf_cur.kpsn[idx_cur_inliers],
            kf_ref.kpsn[idx_ref_inliers])

        new_pts_count, mask_points, _ = map.add_points(
            pts3d,
            mask_pts3d,
            kf_cur,
            kf_ref,
            idx_cur_inliers,
            idx_ref_inliers,
            img_cur,
            do_check=True,
            cos_max_parallax=Parameters.kCosMaxParallaxInitializer)
        #print("# triangulated points: ", new_pts_count)

        if new_pts_count > self.num_min_triangulated_points:
            err = map.optimize(verbose=False,
                               rounds=20,
                               use_robust_kernel=True)
            print("init optimization error^2: %f" % err)

            num_map_points = len(map.points)
            print("# map points:   %d" % num_map_points)
            is_ok = num_map_points > self.num_min_triangulated_points

            out.pts = pts3d[mask_points]
            out.kf_cur = kf_cur
            out.idxs_cur = idx_cur_inliers[mask_points]
            out.kf_ref = kf_ref
            out.idxs_ref = idx_ref_inliers[mask_points]

            # set scene median depth to equal desired_median_depth'
            desired_median_depth = Parameters.kInitializerDesiredMedianDepth
            median_depth = kf_cur.compute_points_median_depth(out.pts)
            depth_scale = desired_median_depth / median_depth
            print('forcing current median depth ', median_depth, ' to ',
                  desired_median_depth)

            out.pts[:, :3] = out.pts[:, :3] * depth_scale  # scale points
            tcw = kf_cur.tcw * depth_scale  # scale initial baseline
            kf_cur.update_translation(tcw)

        map.delete()

        if is_ok:
            Printer.green('Inializer: ok!')
        else:
            self.num_failures += 1
            #Printer.red('Inializer: ko!')
        print('|------------')
        return out, is_ok
Пример #2
0
class SLAM(object):
    def __init__(self, camera, tracker, grountruth=None):
        self.cam = camera

        self.map = Map()

        Frame.set_tracker(tracker)  # set the static field of the class

        # camera info
        self.W, self.H = camera.width, camera.height
        self.K = camera.K
        self.Kinv = camera.Kinv
        self.D = camera.D  # distortion coefficients [k1, k2, p1, p2, k3]

        self.stage = SLAMStage.NO_IMAGES_YET

        self.intializer = Initializer()

        self.cur_R = None  # current rotation w.r.t. world frame
        self.cur_t = None  # current translation w.r.t. world frame

        self.num_matched_kps = None  # current number of matched keypoints
        self.num_inliers = None  # current number of matched inliers
        self.num_vo_map_points = None  # current number of valid VO map points (matched and found valid in current pose optimization)

        self.trueX, self.trueY, self.trueZ = None, None, None
        self.grountruth = grountruth

        self.mask_match = None

        self.velocity = None

        self.init_history = True
        self.poses = []  # history of poses
        self.t0_est = None  # history of estimated translations
        self.t0_gt = None  # history of ground truth translations (if available)
        self.traj3d_est = [
        ]  # history of estimated translations centered w.r.t. first one
        self.traj3d_gt = [
        ]  # history of estimated ground truth translations centered w.r.t. first one

        self.timer_verbose = kTimerVerbose  # set this to True if you want to print timings
        self.timer_main_track = TimerFps('Track',
                                         is_verbose=self.timer_verbose)
        self.timer_pose_opt = TimerFps('Pose optimization',
                                       is_verbose=self.timer_verbose)
        self.timer_match = TimerFps('Match', is_verbose=self.timer_verbose)
        self.timer_pose_est = TimerFps('Pose estimation',
                                       is_verbose=self.timer_verbose)
        self.timer_frame = TimerFps('Frame', is_verbose=self.timer_verbose)
        self.timer_seach_map = TimerFps('Search Map',
                                        is_verbose=self.timer_verbose)
        self.timer_triangulation = TimerFps('Triangulation',
                                            is_verbose=self.timer_verbose)
        self.time_local_opt = TimerFps('Local optimization',
                                       is_verbose=self.timer_verbose)

    # fit essential matrix E with RANSAC such that:  p2.T * E * p1 = 0  where  E = [t21]x * R21
    # out: [Rrc, trc]   (with respect to 'ref' frame)
    # N.B.1: trc is estimated up to scale (i.e. the algorithm always returns ||trc||=1, we need a scale in order to recover a translation which is coherent with previous estimated poses)
    # N.B.2: this function has problems in the following cases: [see Hartley/Zisserman Book]
    # - 'geometrical degenerate correspondences', e.g. all the observed features lie on a plane (the correct model for the correspondences is an homography) or lie a ruled quadric
    # - degenerate motions such a pure rotation (a sufficient parallax is required) or an infinitesimal viewpoint change (where the translation is almost zero)
    # N.B.3: the five-point algorithm (used for estimating the Essential Matrix) seems to work well in the degenerate planar cases [Five-Point Motion Estimation Made Easy, Hartley]
    # N.B.4: as reported above, in case of pure rotation, this algorithm will compute a useless fundamental matrix which cannot be decomposed to return the rotation
    def estimate_pose_ess_mat(self, kpn_ref, kpn_cur):
        E, self.mask_match = cv2.findEssentialMat(
            kpn_cur,
            kpn_ref,
            focal=1,
            pp=(0., 0.),
            method=cv2.RANSAC,
            prob=kRansacProb,
            threshold=kRansacThresholdNormalized)
        _, R, t, mask = cv2.recoverPose(E,
                                        kpn_cur,
                                        kpn_ref,
                                        focal=1,
                                        pp=(0., 0.))
        return poseRt(R, t.T)  # Rrc,trc (cur with respect to 'ref' frame)

    def track(self, img, frame_id, pose=None, verts=None):
        # check image size is coherent with camera params
        print("img.shape ", img.shape)
        print("cam ", self.H, " x ", self.W)
        assert img.shape[0:2] == (self.H, self.W)

        self.timer_main_track.start()

        # build current frame
        self.timer_frame.start()
        f_cur = Frame(self.map, img, self.K, self.Kinv, self.D, des=verts)
        self.timer_frame.refresh()

        if self.stage == SLAMStage.NO_IMAGES_YET:
            # push first frame in the inizializer
            self.intializer.init(f_cur)
            self.stage = SLAMStage.NOT_INITIALIZED
            return  # EXIT (jump to second frame)

        if self.stage == SLAMStage.NOT_INITIALIZED:
            # try to inizialize
            initializer_output, is_ok = self.intializer.initialize(f_cur, img)
            if is_ok:
                f_ref = self.intializer.f_ref
                # add the two initialized frames in the map
                self.map.add_frame(
                    f_ref)  # add first frame in map and update its id
                self.map.add_frame(
                    f_cur)  # add second frame in map and update its id
                # add points in map
                new_pts_count, _ = self.map.add_points(
                    initializer_output.points4d, None, f_cur, f_ref,
                    initializer_output.idx_cur, initializer_output.idx_ref,
                    img)
                Printer.green("map: initialized %d new points" %
                              (new_pts_count))
                self.stage = SLAMStage.OK
            return  # EXIT (jump to next frame)

        f_ref = self.map.frames[-1]  # get previous frame in map
        self.map.add_frame(f_cur)  # add f_cur to map

        # udpdate (velocity) motion model (kinematic without damping)
        self.velocity = np.dot(f_ref.pose,
                               np.linalg.inv(self.map.frames[-2].pose))
        predicted_pose = np.dot(self.velocity, f_ref.pose)

        if kUseMotionModel is True:
            print('using motion model')
            # set intial guess for current pose optimization
            f_cur.pose = predicted_pose.copy()
            #f_cur.pose = f_ref.pose.copy()  # get the last pose as an initial guess for optimization

            if kUseSearchFrameByProjection:
                # search frame by projection: match map points observed in f_ref with keypoints of f_cur
                print('search frame by projection...')
                idx_ref, idx_cur, num_found_map_pts = search_frame_by_projection(
                    f_ref, f_cur)
                print("# found map points in prev frame: %d " %
                      num_found_map_pts)
            else:
                self.timer_match.start()
                # find keypoint matches between f_cur and f_ref
                idx_cur, idx_ref = match_frames(f_cur, f_ref)
                self.num_matched_kps = idx_cur.shape[0]
                print('# keypoint matches: ', self.num_matched_kps)
                self.timer_match.refresh()

        else:
            print('estimating pose by fitting essential mat')

            self.timer_match.start()
            # find keypoint matches between f_cur and f_ref
            idx_cur, idx_ref = match_frames(f_cur, f_ref)
            self.num_matched_kps = idx_cur.shape[0]
            print('# keypoint matches: ', self.num_matched_kps)
            self.timer_match.refresh()

            # N.B.: please, in order to understand the limitations of fitting an essential mat, read the comments of the method self.estimate_pose_ess_mat()
            self.timer_pose_est.start()
            # estimate inter frame camera motion by using found keypoint matches
            Mrc = self.estimate_pose_ess_mat(f_ref.kpsn[idx_ref],
                                             f_cur.kpsn[idx_cur])
            Mcr = np.linalg.inv(poseRt(Mrc[:3, :3], Mrc[:3, 3]))
            f_cur.pose = np.dot(Mcr, f_ref.pose)
            self.timer_pose_est.refresh()

            # remove outliers from keypoint matches by using the mask computed with inter frame pose estimation
            mask_index = (self.mask_match.ravel() == 1)
            self.num_inliers = sum(mask_index)
            print('# inliers: ', self.num_inliers)
            idx_ref = idx_ref[mask_index]
            idx_cur = idx_cur[mask_index]

            # if too many outliers reset estimated pose
            if self.num_inliers < kNumMinInliersEssentialMat:
                f_cur.pose = f_ref.pose.copy(
                )  # reset estimated pose to previous frame
                Printer.red('Essential mat: not enough inliers!')

            # set intial guess for current pose optimization:
            # keep the estimated rotation and override translation with ref frame translation (we do not have a proper scale for the translation)
            f_cur.pose[:, 3] = f_ref.pose[:, 3].copy()
            #f_cur.pose[:,3] = predicted_pose[:,3].copy()  # or use motion model for translation

        # populate f_cur with map points by propagating map point matches of f_ref:
        # we use map points observed in f_ref and keypoint matches between f_ref and f_cur
        num_found_map_pts_inter_frame = 0
        if not kUseSearchFrameByProjection:
            for i, idx in enumerate(idx_ref):  # iterate over keypoint matches
                if f_ref.points[
                        idx] is not None:  # if we have a map point P for i-th matched keypoint in f_ref
                    f_ref.points[idx].add_observation(
                        f_cur, idx_cur[i]
                    )  # then P is automatically matched to the i-th matched keypoint in f_cur
                    num_found_map_pts_inter_frame += 1
            print("# matched map points in prev frame: %d " %
                  num_found_map_pts_inter_frame)

        # f_cur pose optimization 1  (here we use first available information coming from first guess of f_cur pose and map points of f_ref matched keypoints )
        self.timer_pose_opt.start()
        pose_opt_error, pose_is_ok, self.num_vo_map_points = optimizer_g2o.poseOptimization(
            f_cur, verbose=False)
        print("pose opt err1: %f,  ok: %d" % (pose_opt_error, int(pose_is_ok)))
        # discard outliers detected in pose optimization (in current frame)
        #f_cur.reset_outlier_map_points()

        if pose_is_ok is True:
            # discard outliers detected in f_cur pose optimization (in current frame)
            f_cur.reset_outlier_map_points()
        else:
            # if current pose optimization failed, reset f_cur pose to f_ref pose
            f_cur.pose = f_ref.pose.copy()

        self.timer_pose_opt.pause()

        # TODO: add recover in case of f_cur pose optimization failure

        # now, having a better estimate of f_cur pose, we can find more map point matches:
        # find matches between {local map points} (points in the built local map) and {unmatched keypoints of f_cur}
        if pose_is_ok is True and not self.map.local_map.is_empty():
            self.timer_seach_map.start()
            #num_found_map_pts = search_local_frames_by_projection(self.map, f_cur)
            num_found_map_pts = search_map_by_projection(
                self.map.local_map.points, f_cur)  # use the built local map
            print("# matched map points in local map: %d " % num_found_map_pts)
            self.timer_seach_map.refresh()

            # f_cur pose optimization 2 with all the matched map points
            self.timer_pose_opt.resume()
            pose_opt_error, pose_is_ok, self.num_vo_map_points = optimizer_g2o.poseOptimization(
                f_cur, verbose=False)
            print("pose opt err2: %f,  ok: %d" %
                  (pose_opt_error, int(pose_is_ok)))
            print("# valid matched map points: %d " % self.num_vo_map_points)
            # discard outliers detected in pose optimization (in current frame)
            if pose_is_ok is True:
                f_cur.reset_outlier_map_points()
            self.timer_pose_opt.refresh()

        if kUseSearchFrameByProjection:
            print("search for triangulation with epipolar lines...")
            idx_ref, idx_cur, self.num_matched_kps, _ = search_frame_for_triangulation(
                f_ref, f_cur, img)
            print("# matched keypoints in prev frame: %d " %
                  self.num_matched_kps)

        # if pose is ok, then we try to triangulate the matched keypoints (between f_cur and f_ref) that do not have a corresponding map point
        if pose_is_ok is True and len(idx_ref) > 0:
            self.timer_triangulation.start()

            # TODO: this triangulation should be done from keyframes!
            good_pts4d = np.array([
                f_cur.points[i] is None for i in idx_cur
            ])  # matched keypoints of f_cur without a corresponding map point
            # do triangulation in global frame
            pts4d = triangulate_points(f_cur.pose, f_ref.pose,
                                       f_cur.kpsn[idx_cur],
                                       f_ref.kpsn[idx_ref], good_pts4d)
            good_pts4d &= np.abs(pts4d[:, 3]) != 0
            #pts4d /= pts4d[:, 3:]
            pts4d[good_pts4d] /= pts4d[good_pts4d,
                                       3:]  # get homogeneous 3-D coords

            new_pts_count, _ = self.map.add_points(pts4d,
                                                   good_pts4d,
                                                   f_cur,
                                                   f_ref,
                                                   idx_cur,
                                                   idx_ref,
                                                   img,
                                                   check_parallax=True)
            print("# added map points: %d " % (new_pts_count))
            self.timer_triangulation.refresh()

        # local optimization
        self.time_local_opt.start()
        err = self.map.locally_optimize(local_window=kLocalWindow)
        print("local optimization error:   %f" % err)
        self.time_local_opt.refresh()

        # large window optimization of the map
        # TODO: move this in a seperate thread with local mapping
        if kUseLargeWindowBA is True and f_cur.id >= parameters.kEveryNumFramesLargeWindowBA and f_cur.id % parameters.kEveryNumFramesLargeWindowBA == 0:
            err = self.map.optimize(
                local_window=parameters.kLargeWindow)  # verbose=True)
            Printer.blue("large window optimization error:   %f" % err)

        print("map: %d points, %d frames" %
              (len(self.map.points), len(self.map.frames)))
        #self.updateHistory()

        self.timer_main_track.refresh()

    def updateHistory(self):
        f_cur = self.map.frames[-1]
        self.cur_R = f_cur.pose[:3, :3].T
        self.cur_t = np.dot(-self.cur_R, f_cur.pose[:3, 3])
        if (self.init_history is True) and (self.trueX is not None):
            self.t0_est = np.array(
                [self.cur_t[0], self.cur_t[1],
                 self.cur_t[2]])  # starting translation
            self.t0_gt = np.array([self.trueX, self.trueY,
                                   self.trueZ])  # starting translation
        if (self.t0_est is not None) and (self.t0_gt is not None):
            p = [
                self.cur_t[0] - self.t0_est[0], self.cur_t[1] - self.t0_est[1],
                self.cur_t[2] - self.t0_est[2]
            ]  # the estimated traj starts at 0
            self.traj3d_est.append(p)
            self.traj3d_gt.append([
                self.trueX - self.t0_gt[0], self.trueY - self.t0_gt[1],
                self.trueZ - self.t0_gt[2]
            ])
            self.poses.append(poseRt(self.cur_R, p))

    # get current translation scale from ground-truth if this is set
    def getAbsoluteScale(self, frame_id):
        if self.grountruth is not None and kUseGroundTruthScale:
            self.trueX, self.trueY, self.trueZ, scale = self.grountruth.getPoseAndAbsoluteScale(
                frame_id)
            return scale
        else:
            self.trueX = 0
            self.trueY = 0
            self.trueZ = 0
            return 1
Пример #3
0
    def initialize(self, f_cur, img_cur):

        # prepare the output
        out = InitializerOutput()
        is_ok = False

        # if too many frames have passed, move the current id_ref forward
        if (len(self.frames) - 1) - self.id_ref >= kMaxIdDistBetweenFrames:
            self.id_ref = len(self.frames) - 1  # take last frame in the array
        self.f_ref = self.frames[self.id_ref]
        f_ref = self.f_ref

        # append current frame
        self.frames.append(f_cur)

        # if the current frames do no have enough features exit
        if len(f_ref.kps) < kNumMinFeatures or len(
                f_cur.kps) < kNumMinFeatures:
            Printer.red('Inializer: not enough features!')
            return out, is_ok

        # find image point matches
        idx_cur, idx_ref = match_frames(f_cur, f_ref)

        print('├────────')
        print('initializing frames ', f_cur.id, ', ', f_ref.id)
        Mrc = self.estimatePose(f_ref.kpsn[idx_ref], f_cur.kpsn[idx_cur])
        f_cur.pose = np.linalg.inv(poseRt(
            Mrc[:3, :3], Mrc[:3, 3]))  # [Rcr, tcr] w.r.t. ref frame

        # remove outliers
        mask_index = [i for i, v in enumerate(self.mask_match) if v > 0]
        print('num inliers: ', len(mask_index))
        idx_cur_inliers = idx_cur[mask_index]
        idx_ref_inliers = idx_ref[mask_index]

        # create a temp map for initializing
        map = Map()
        map.add_frame(f_ref)
        map.add_frame(f_cur)

        points4d = self.triangulatePoints(f_cur.pose, f_ref.pose,
                                          f_cur.kpsn[idx_cur_inliers],
                                          f_ref.kpsn[idx_ref_inliers])
        #pts4d = triangulate(f_cur.pose, f_ref.pose, f_cur.kpsn[idx_cur], f_ref.kpsn[idx_ref])

        new_pts_count, mask_points = map.add_points(points4d,
                                                    None,
                                                    f_cur,
                                                    f_ref,
                                                    idx_cur_inliers,
                                                    idx_ref_inliers,
                                                    img_cur,
                                                    check_parallax=True)
        print("triangulated:      %d new points from %d matches" %
              (new_pts_count, len(idx_cur)))
        err = map.optimize(verbose=False)
        print("pose opt err:   %f" % err)

        #reset points in frames
        f_cur.reset_points()
        f_ref.reset_points()

        num_map_points = len(map.points)
        #print("# map points:   %d" % num_map_points)
        is_ok = num_map_points > kNumMinTriangulatedPoints

        out.points4d = points4d[mask_points]
        out.f_cur = f_cur
        out.idx_cur = idx_cur_inliers[mask_points]
        out.f_ref = f_ref
        out.idx_ref = idx_ref_inliers[mask_points]

        # set median depth to 'desired_median_depth'
        desired_median_depth = parameters.kInitializerDesiredMedianDepth
        median_depth = f_cur.compute_points_median_depth(out.points4d)
        depth_scale = desired_median_depth / median_depth
        print('median depth: ', median_depth)

        out.points4d = out.points4d * depth_scale  # scale points
        f_cur.pose[:3,
                   3] = f_cur.pose[:3,
                                   3] * depth_scale  # scale initial baseline

        print('├────────')
        Printer.green('Inializer: ok!')
        return out, is_ok