Пример #1
0
    def get_mkr_eth_prices(self, takes):
        takes_1 = filter(lambda log_take: log_take.buy_token == self.mkr_address and log_take.pay_token == self.weth_address, takes)
        takes_2 = filter(lambda log_take: log_take.buy_token == self.weth_address and log_take.pay_token == self.mkr_address, takes)

        prices_mkr_eth = list(map(lambda log_take: Price(timestamp=log_take.timestamp,
                                                         price=float(log_take.take_amount / log_take.give_amount),
                                                         buy_price=None,
                                                         sell_price=None,
                                                         volume=float(log_take.give_amount)), takes_1)) \
                         + list(map(lambda log_take: Price(timestamp=log_take.timestamp,
                                                           price=float(log_take.give_amount / log_take.take_amount),
                                                           buy_price=None,
                                                           sell_price=None,
                                                           volume=float(log_take.take_amount)), takes_2))

        return prices_mkr_eth
Пример #2
0
def prepare_prices_for_charting(prices: List[Price],
                                price_gap_size: int) -> List[Price]:
    if len(prices) == 0:
        return prices

    result = [prices[0]]
    for i in range(1, len(prices)):
        if prices[i].timestamp - prices[i - 1].timestamp > price_gap_size:
            result.append(
                Price(prices[i - 1].timestamp + 1, None, None, None, None))

        result.append(prices[i])

    return result
Пример #3
0
    def convert_prices(self, source: List[Price], target: List[Price], operator):
        result = []
        for price in source:
            matching_target = next(filter(lambda target_price: target_price.timestamp >= price.timestamp, target), None)
            if matching_target is not None:
                result.append(Price(timestamp=price.timestamp,
                                    price=operator(price.price, matching_target.price),
                                    buy_price=None,
                                    sell_price=None,
                                    volume=price.volume))
            else:
                logging.warning(f"No matching price found at {price.timestamp}")

        return result
Пример #4
0
def test_granularize_prices_fills_gaps():
    # given
    # 1518440700 = 2018-02-12 13:05:00 UTC
    prices = [Price(1518440700, 1.5, None, None, 10),
              Price(1518440760, 1.7, None, None, 14),
              Price(1518440880, 1.2, None, None, 18)]

    # when
    granularized_prices = granularize_prices(prices)

    # then
    assert granularized_prices == [Price(1518440700, 1.5, None, None, 10),
                                   Price(1518440760, 1.7, None, None, 14),
                                   Price(1518440820, 0, 0, 0, 0),
                                   Price(1518440880, 1.2, None, None, 18)]
Пример #5
0
def test_granularize_prices_fills_gaps_even_if_seconds_are_uneven():
    # given
    # 1518440700 = 2018-02-12 13:05:00 UTC
    prices = [Price(1518440759, 1.5, None, None, 10),
              Price(1518440760, 1.7, None, None, 14),
              Price(1518440851, 1.2, None, None, 18)]

    # when
    granularized_prices = granularize_prices(prices)

    # then
    assert granularized_prices == [Price(1518440759, 1.5, None, None, 10),
                                   Price(1518440760, 1.7, None, None, 14),
                                   Price(1518440851, 1.2, None, None, 18)]
Пример #6
0
def granularize_prices(prices: list) -> list:
    def get_minute(ts):
        return int(ts / 60)

    granular_prices = []
    last_timestamp = -1
    for price in prices:
        if last_timestamp != -1:
            minute_increment = get_minute(
                price.timestamp) - get_minute(last_timestamp)
            for i in range(0, minute_increment - 1):
                granular_prices.append(
                    Price(last_timestamp + 60 * (i + 1), 0.0, 0.0, 0.0, 0.0))

            if minute_increment > 0:
                granular_prices.append(price)

        else:
            granular_prices.append(price)

        last_timestamp = price.timestamp

    return granular_prices
Пример #7
0
def test_granularize_prices_removes_duplicates():
    # given
    # 1518440700 = 2018-02-12 13:05:00 UTC
    prices = [Price(1518440700, 1.5, None, None, 10),
              Price(1518440730, 1.51, None, None, 11),
              Price(1518440740, 1.52, None, None, 12),
              Price(1518440759, 1.53, None, None, 13),
              Price(1518440760, 1.7, None, None, 14),
              Price(1518440885, 1.2, None, None, 18),
              Price(1518440910, 1.1, None, None, 29),]

    # when
    granularized_prices = granularize_prices(prices)

    # then
    assert granularized_prices == [Price(1518440700, 1.5, None, None, 10),
                                   Price(1518440760, 1.7, None, None, 14),
                                   Price(1518440820, 0, 0, 0, 0),
                                   Price(1518440885, 1.2, None, None, 18)]