Пример #1
0
    def testInitialAssignsWithInputs(self):
        import numpy as np
        from mars.tensor.random import TensorRandint
        from mars.tensor.arithmetic import TensorTreeAdd

        n1 = TensorRandint(state=np.random.RandomState(0),
                           dtype=np.float32()).new_chunk(None, shape=(10, 10))
        n2 = TensorRandint(state=np.random.RandomState(1),
                           dtype=np.float32()).new_chunk(None, shape=(10, 10))

        n3 = TensorTreeAdd(dtype=np.float32()).new_chunk(None, shape=(10, 10))
        n3.op._inputs = [n1, n2]
        n4 = TensorTreeAdd(dtype=np.float32()).new_chunk(None, shape=(10, 10))
        n4.op._inputs = [n3]

        graph = DAG()
        graph.add_node(n1)
        graph.add_node(n3)
        graph.add_node(n4)
        graph.add_edge(n1, n3)
        graph.add_edge(n3, n4)

        analyzer = GraphAnalyzer(graph, {})
        ext_chunks = analyzer.collect_external_input_chunks(initial=False)
        self.assertListEqual(ext_chunks[n3.op.key], [n2.key])
        self.assertEqual(
            len(analyzer.collect_external_input_chunks(initial=True)), 0)
Пример #2
0
    def _build_chunk_dag(node_str, edge_str):
        from mars.tensor.random import TensorRandint
        from mars.tensor.arithmetic import TensorTreeAdd

        char_dag = DAG()
        for s in node_str.split(','):
            char_dag.add_node(s.strip())
        for s in edge_str.split(','):
            l, r = s.split('->')
            char_dag.add_edge(l.strip(), r.strip())

        chunk_dag = DAG()
        str_to_chunk = dict()
        for s in char_dag.topological_iter():
            if char_dag.count_predecessors(s):
                c = TensorTreeAdd(args=[],
                                  _key=s,
                                  dtype=np.dtype(np.float32())).new_chunk(
                                      None, shape=(10, 10)).data
                inputs = c.op._inputs = [
                    str_to_chunk[ps] for ps in char_dag.predecessors(s)
                ]
            else:
                c = TensorRandint(_key=s, dtype=np.dtype(
                    np.float32())).new_chunk(None, shape=(10, 10)).data
                inputs = []
            str_to_chunk[s] = c
            chunk_dag.add_node(c)
            for inp in inputs:
                chunk_dag.add_edge(inp, c)
        return chunk_dag, str_to_chunk
Пример #3
0
    def testSameKeyAssign(self):
        import numpy as np
        from mars.tensor.random import TensorRandint
        from mars.tensor.arithmetic import TensorTreeAdd

        graph = DAG()
        r"""
        Proper initial allocation should divide the graph like

         U   U   |   U   U   |   U   U
        | | | |  |  | | | |  |  | | | |
         U   U   |   U   U   |   U   U
        """

        inputs = [
            tuple(
                TensorRandint(_key=str(i), dtype=np.float32()).new_chunk(
                    None, shape=(10, 10)) for _ in range(2)) for i in range(6)
        ]
        results = [
            TensorTreeAdd(dtype=np.float32()).new_chunk(None, shape=(10, 10))
            for _ in range(6)
        ]
        for inp, r in zip(inputs, results):
            r.op._inputs = list(inp)

            graph.add_node(r)
            for n in inp:
                graph.add_node(n)
                graph.add_edge(n, r)

        analyzer = GraphAnalyzer(graph, dict(w1=24, w2=24, w3=24))
        assignments = analyzer.calc_operand_assignments(
            analyzer.get_initial_operand_keys())
        self.assertEqual(len(assignments), 6)
Пример #4
0
    def testAssignOnWorkerLost(self):
        import numpy as np
        from mars.scheduler import OperandState
        from mars.tensor.random import TensorRandint
        from mars.tensor.arithmetic import TensorTreeAdd

        graph = DAG()
        r"""
        Proper initial allocation should divide the graph like

        FL  FL F   F R   R  |  FL  FL F   F R   R
        | x |  | x | | x |  |  | x |  | x | | x |
        R   R  R   R U   U  |  R   R  R   R U   U

        U: UNSCHEDULED  F: FINISHED  R: READY  L: LOST
        """

        op_states = dict()
        inputs = [
            tuple(
                TensorRandint(
                    dtype=np.float32()).new_chunk(None, shape=(10, 10))
                for _ in range(2)) for _ in range(6)
        ]
        results = [
            tuple(
                TensorTreeAdd(_key=f'{i}_{j}', dtype=np.float32()).new_chunk(
                    None, shape=(10, 10)) for j in range(2)) for i in range(6)
        ]
        for inp, outp in zip(inputs, results):
            for o in outp:
                o.op._inputs = list(inp)
                op_states[o.op.key] = OperandState.UNSCHEDULED
                graph.add_node(o)

            for n in inp:
                op_states[n.op.key] = OperandState.UNSCHEDULED
                graph.add_node(n)
                for o in outp:
                    graph.add_edge(n, o)

        fixed_assigns = dict()
        for idx in range(4):
            for i in range(2):
                fixed_assigns[inputs[idx][i].op.key] = f'w{idx % 2 + 1}'
                op_states[inputs[idx][i].op.key] = OperandState.FINISHED
                fixed_assigns[results[idx][i].op.key] = f'w{idx % 2 + 1}'
                op_states[results[idx][i].op.key] = OperandState.READY

        for inp in inputs:
            for n in inp:
                if n.op.key in fixed_assigns:
                    continue
                op_states[n.op.key] = OperandState.READY

        lost_chunks = [c.key for inp in (inputs[0], inputs[2]) for c in inp]

        worker_metrics = dict(w2=24, w3=24)
        analyzer = GraphAnalyzer(graph, worker_metrics, fixed_assigns,
                                 op_states, lost_chunks)
        changed_states = analyzer.analyze_state_changes()

        self.assertEqual(len(changed_states), 8)
        self.assertTrue(
            all(changed_states[c.op.key] == OperandState.READY
                for inp in (inputs[0], inputs[2]) for c in inp))
        self.assertTrue(
            all(changed_states[c.op.key] == OperandState.UNSCHEDULED
                for res in (results[0], results[2]) for c in res))

        assignments = analyzer.calc_operand_assignments(
            analyzer.get_initial_operand_keys())
        for inp in inputs:
            if any(n.op.key in fixed_assigns for n in inp):
                continue
            self.assertEqual(1, len(set(assignments[n.op.key] for n in inp)))
        worker_assigns = dict((k, 0) for k in worker_metrics)
        for w in assignments.values():
            worker_assigns[w] += 1
        self.assertEqual(2, worker_assigns['w2'])
        self.assertEqual(6, worker_assigns['w3'])
Пример #5
0
    def testAssignWithPreviousData(self):
        import numpy as np
        from mars.scheduler.chunkmeta import WorkerMeta
        from mars.tensor.random import TensorRandint
        from mars.tensor.arithmetic import TensorTreeAdd

        graph = DAG()
        r"""
        Proper initial allocation should divide the graph like

         U   U  |  U   U  |  U   U
          \ /   |   \ /   |   \ /
           U    |    U    |    U
        """

        inputs = [
            tuple(
                TensorRandint(_key=str(i * 2 +
                                       j), dtype=np.float32()).new_chunk(
                                           None, shape=(10, 10))
                for j in range(2)) for i in range(3)
        ]
        results = [
            TensorTreeAdd(dtype=np.float32()).new_chunk(None, shape=(10, 10))
            for _ in range(3)
        ]
        for inp, r in zip(inputs, results):
            r.op._inputs = list(inp)

            graph.add_node(r)
            for n in inp:
                graph.add_node(n)
                graph.add_edge(n, r)

        # assign with partial mismatch
        data_dist = {
            '0':
            dict(c00=WorkerMeta(chunk_size=5, workers=('w1', )),
                 c01=WorkerMeta(chunk_size=5, workers=('w2', ))),
            '1':
            dict(c10=WorkerMeta(chunk_size=10, workers=('w1', ))),
            '2':
            dict(c20=WorkerMeta(chunk_size=10, workers=('w3', ))),
            '3':
            dict(c30=WorkerMeta(chunk_size=10, workers=('w3', ))),
            '4':
            dict(c40=WorkerMeta(chunk_size=7, workers=('w3', ))),
        }
        analyzer = GraphAnalyzer(graph, dict(w1=24, w2=24, w3=24))
        assignments = analyzer.calc_operand_assignments(
            analyzer.get_initial_operand_keys(), input_chunk_metas=data_dist)

        self.assertEqual(len(assignments), 6)

        # explanation of the result:
        # for '1', all data are in w1, hence assigned to w1
        # '0' assigned to w1 according to connectivity
        # '2' and '3' assigned to w3 according to connectivity
        # '4' assigned to w2 because it has fewer data, and the slots of w3 is used up

        self.assertEqual(assignments['0'], 'w1')
        self.assertEqual(assignments['1'], 'w1')
        self.assertEqual(assignments['2'], 'w3')
        self.assertEqual(assignments['3'], 'w3')
        self.assertEqual(assignments['4'], 'w2')
        self.assertEqual(assignments['5'], 'w2')

        # assign with full mismatch
        data_dist = {
            '0':
            dict(c00=WorkerMeta(chunk_size=5, workers=('w1', )),
                 c01=WorkerMeta(chunk_size=5, workers=(
                     'w1',
                     'w2',
                 ))),
            '1':
            dict(c10=WorkerMeta(chunk_size=10, workers=('w1', ))),
            '2':
            dict(c20=WorkerMeta(chunk_size=10, workers=('w3', ))),
            '3':
            dict(c30=WorkerMeta(chunk_size=10, workers=('w3', ))),
            '4':
            dict(c40=WorkerMeta(chunk_size=7, workers=('w2', ))),
            '5':
            dict(c50=WorkerMeta(chunk_size=7, workers=('w2', ))),
        }
        analyzer = GraphAnalyzer(graph, dict(w1=24, w2=24, w3=24))
        assignments = analyzer.calc_operand_assignments(
            analyzer.get_initial_operand_keys(), input_chunk_metas=data_dist)

        self.assertEqual(len(assignments), 6)
        self.assertEqual(assignments['0'], 'w1')
        self.assertEqual(assignments['1'], 'w1')
        self.assertEqual(assignments['2'], 'w3')
        self.assertEqual(assignments['3'], 'w3')
        self.assertEqual(assignments['4'], 'w2')
        self.assertEqual(assignments['5'], 'w2')
Пример #6
0
    def testAssignOnWorkerAdd(self):
        import numpy as np
        from mars.scheduler import OperandState
        from mars.tensor.random import TensorRandint
        from mars.tensor.arithmetic import TensorTreeAdd

        graph = DAG()
        r"""
        Proper initial allocation should divide the graph like

        F   F R   R  |  F   F R   R  |  R   R R   R
        | x | | x |  |  | x | | x |  |  | x | | x |
        R   R U   U  |  R   R U   U  |  U   U U   U

        U: UNSCHEDULED  F: FINISHED  R: READY
        """

        inputs = [
            tuple(
                TensorRandint(
                    dtype=np.float32()).new_chunk(None, shape=(10, 10))
                for _ in range(2)) for _ in range(6)
        ]
        results = [
            tuple(
                TensorTreeAdd(_key='%d_%d' %
                              (i, j), dtype=np.float32()).new_chunk(
                                  None, shape=(10, 10)) for j in range(2))
            for i in range(6)
        ]
        for inp, outp in zip(inputs, results):
            for o in outp:
                o.op._inputs = list(inp)
                graph.add_node(o)

            for n in inp:
                graph.add_node(n)
                for o in outp:
                    graph.add_edge(n, o)

        # mark initial assigns
        fixed_assigns = dict()
        op_states = dict()
        for idx in range(2):
            for i in range(2):
                fixed_assigns[inputs[idx][i].op.key] = 'w%d' % (idx + 1)
                op_states[results[idx][i].op.key] = OperandState.READY
                fixed_assigns[results[idx][i].op.key] = 'w%d' % (idx + 1)

        for inp in inputs:
            for n in inp:
                if n.op.key in fixed_assigns:
                    continue
                op_states[n.op.key] = OperandState.READY

        worker_metrics = dict(w1=24, w2=24, w3=24)
        analyzer = GraphAnalyzer(graph, worker_metrics, fixed_assigns,
                                 op_states)
        assignments = analyzer.calc_operand_assignments(
            analyzer.get_initial_operand_keys())
        for inp in inputs:
            if any(n.op.key in fixed_assigns for n in inp):
                continue
            self.assertEqual(1, len(set(assignments[n.op.key] for n in inp)))
        worker_assigns = dict((k, 0) for k in worker_metrics)
        for w in assignments.values():
            worker_assigns[w] += 1
        self.assertEqual(2, worker_assigns['w1'])
        self.assertEqual(2, worker_assigns['w2'])
        self.assertEqual(4, worker_assigns['w3'])