def test_minmax_scaler_clip(setup, feature_range): # test behaviour of the parameter 'clip' in MinMaxScaler X = iris scaler = MinMaxScaler(feature_range=feature_range, clip=True).fit(X) X_min, X_max = mt.min(X, axis=0), mt.max(X, axis=0) X_test = [mt.r_[X_min[:2] - 10, X_max[2:] + 10]] X_transformed = scaler.transform(X_test) assert_allclose(X_transformed, [[ feature_range[0], feature_range[0], feature_range[1], feature_range[1] ]])
def testMinmaxScalerClip(self): for feature_range in [(0, 1), (-10, 10)]: # test behaviour of the paramter 'clip' in MinMaxScaler X = self.iris scaler = MinMaxScaler(feature_range=feature_range, clip=True).fit(X) X_min, X_max = mt.min(X, axis=0), mt.max(X, axis=0) X_test = [mt.r_[X_min[:2] - 10, X_max[2:] + 10]] X_transformed = scaler.transform(X_test) assert_allclose(X_transformed, [[ feature_range[0], feature_range[0], feature_range[1], feature_range[1] ]])
def test_minmax_scale_axis1(setup): X = iris X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(mt.min(X_trans, axis=1), 0) assert_array_almost_equal(mt.max(X_trans, axis=1), 1)
def testMinmaxScaleAxis1(self): X = self.iris X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(mt.min(X_trans, axis=1), 0) assert_array_almost_equal(mt.max(X_trans, axis=1), 1)