Пример #1
0
    def filter_results_fast(self, boxlist, num_classes, feature=None):
        """ perform only one NMS for all classes.
        """
        assert boxlist.bbox.shape[1] == 4
        scores = boxlist.get_field("scores").reshape(-1, num_classes)

        # for each box, select max conf exclude background
        scores, labels = scores[:, 1:].max(1)
        labels += 1
        bbox = boxlist.bbox
        if not self.ignore_box_regression and not self.cls_agnostic_bbox_reg:
            bbox = bbox.reshape(-1, num_classes, 4).mean(1)

        boxlist.add_field("scores", scores)
        boxlist.add_field("labels", labels)
        boxlist.add_field("box_features", feature)

        # threshold by size and confidence
        # use a relatively low thresh to output enough boxes
        x1, y1, x2, y2 = bbox.split(1, dim=1)
        ws = (x2 - x1).squeeze(1)
        hs = (y2 - y1).squeeze(1)
        keep = (
            (ws >= 0) & (hs >= 0) & (scores > self.score_thresh * 0.01)
        ).nonzero().squeeze(1)
        del ws, hs

        # apply nms to the previous low-thresholded results
        nms_boxes = box_nms(bbox[keep], scores[keep], self.nms)
        nms_idx = keep[nms_boxes]  # indices that pass NMS and low-threshold
        nms_scores = scores[nms_idx]
        # sort above low-thresholded scores high to low
        _, idx = torch.sort(nms_scores, dim=0, descending=True)
        idx = nms_idx[idx]

        num_dets = (nms_scores >= self.score_thresh).long().sum()
        if not isinstance(num_dets, torch.Tensor):
            num_dets = torch.as_tensor(num_dets, device=scores.device)
        min_det = torch.stack([num_dets, torch.as_tensor(self.min_detections_per_img, device=scores.device)]).max()
        max_det = torch.stack([min_det, torch.as_tensor(self.detections_per_img, device=scores.device)]).min()

        keep_boxes = idx[:max_det]

        return boxlist[keep_boxes]
Пример #2
0
    def test_nms_cpu(self):
        """ Match unit test UtilsNMSTest.TestNMS in
            caffe2/operators/generate_proposals_op_util_nms_test.cc
        """

        inputs = (np.array([
            10,
            10,
            50,
            60,
            0.5,
            11,
            12,
            48,
            60,
            0.7,
            8,
            9,
            40,
            50,
            0.6,
            100,
            100,
            150,
            140,
            0.9,
            99,
            110,
            155,
            139,
            0.8,
        ]).astype(np.float32).reshape(-1, 5))

        boxes = torch.from_numpy(inputs[:, :4])
        scores = torch.from_numpy(inputs[:, 4])
        test_thresh = [0.1, 0.3, 0.5, 0.8, 0.9]
        gt_indices = [[1, 3], [1, 3], [1, 3], [1, 2, 3, 4], [0, 1, 2, 3, 4]]

        for thresh, gt_index in zip(test_thresh, gt_indices):
            keep_indices = box_nms(boxes, scores, thresh)
            keep_indices = np.sort(keep_indices)
            np.testing.assert_array_equal(keep_indices, np.array(gt_index))
Пример #3
0
    def test_nms1_cpu(self):
        """ Match unit test UtilsNMSTest.TestNMS1 in
            caffe2/operators/generate_proposals_op_util_nms_test.cc
        """

        boxes = torch.from_numpy(
            np.array([
                [350.9821, 161.8200, 369.9685, 205.2372],
                [250.5236, 154.2844, 274.1773, 204.9810],
                [471.4920, 160.4118, 496.0094, 213.4244],
                [352.0421, 164.5933, 366.4458, 205.9624],
                [166.0765, 169.7707, 183.0102, 232.6606],
                [252.3000, 183.1449, 269.6541, 210.6747],
                [469.7862, 162.0192, 482.1673, 187.0053],
                [168.4862, 174.2567, 181.7437, 232.9379],
                [470.3290, 162.3442, 496.4272, 214.6296],
                [251.0450, 155.5911, 272.2693, 203.3675],
                [252.0326, 154.7950, 273.7404, 195.3671],
                [351.7479, 161.9567, 370.6432, 204.3047],
                [496.3306, 161.7157, 515.0573, 210.7200],
                [471.0749, 162.6143, 485.3374, 207.3448],
                [250.9745, 160.7633, 264.1924, 206.8350],
                [470.4792, 169.0351, 487.1934, 220.2984],
                [474.4227, 161.9546, 513.1018, 215.5193],
                [251.9428, 184.1950, 262.6937, 207.6416],
                [252.6623, 175.0252, 269.8806, 213.7584],
                [260.9884, 157.0351, 288.3554, 206.6027],
                [251.3629, 164.5101, 263.2179, 202.4203],
                [471.8361, 190.8142, 485.6812, 220.8586],
                [248.6243, 156.9628, 264.3355, 199.2767],
                [495.1643, 158.0483, 512.6261, 184.4192],
                [376.8718, 168.0144, 387.3584, 201.3210],
                [122.9191, 160.7433, 172.5612, 231.3837],
                [350.3857, 175.8806, 366.2500, 205.4329],
                [115.2958, 162.7822, 161.9776, 229.6147],
                [168.4375, 177.4041, 180.8028, 232.4551],
                [169.7939, 184.4330, 181.4767, 232.1220],
                [347.7536, 175.9356, 355.8637, 197.5586],
                [495.5434, 164.6059, 516.4031, 207.7053],
                [172.1216, 194.6033, 183.1217, 235.2653],
                [264.2654, 181.5540, 288.4626, 214.0170],
                [111.7971, 183.7748, 137.3745, 225.9724],
                [253.4919, 186.3945, 280.8694, 210.0731],
                [165.5334, 169.7344, 185.9159, 232.8514],
                [348.3662, 184.5187, 354.9081, 201.4038],
                [164.6562, 162.5724, 186.3108, 233.5010],
                [113.2999, 186.8410, 135.8841, 219.7642],
                [117.0282, 179.8009, 142.5375, 221.0736],
                [462.1312, 161.1004, 495.3576, 217.2208],
                [462.5800, 159.9310, 501.2937, 224.1655],
                [503.5242, 170.0733, 518.3792, 209.0113],
                [250.3658, 195.5925, 260.6523, 212.4679],
                [108.8287, 163.6994, 146.3642, 229.7261],
                [256.7617, 187.3123, 288.8407, 211.2013],
                [161.2781, 167.4801, 186.3751, 232.7133],
                [115.3760, 177.5859, 163.3512, 236.9660],
                [248.9077, 188.0919, 264.8579, 207.9718],
                [108.1349, 160.7851, 143.6370, 229.6243],
                [465.0900, 156.7555, 490.3561, 213.5704],
                [107.5338, 173.4323, 141.0704, 235.2910],
            ]).astype(np.float32))
        scores = torch.from_numpy(
            np.array([
                0.1919,
                0.3293,
                0.0860,
                0.1600,
                0.1885,
                0.4297,
                0.0974,
                0.2711,
                0.1483,
                0.1173,
                0.1034,
                0.2915,
                0.1993,
                0.0677,
                0.3217,
                0.0966,
                0.0526,
                0.5675,
                0.3130,
                0.1592,
                0.1353,
                0.0634,
                0.1557,
                0.1512,
                0.0699,
                0.0545,
                0.2692,
                0.1143,
                0.0572,
                0.1990,
                0.0558,
                0.1500,
                0.2214,
                0.1878,
                0.2501,
                0.1343,
                0.0809,
                0.1266,
                0.0743,
                0.0896,
                0.0781,
                0.0983,
                0.0557,
                0.0623,
                0.5808,
                0.3090,
                0.1050,
                0.0524,
                0.0513,
                0.4501,
                0.4167,
                0.0623,
                0.1749,
            ]).astype(np.float32))

        gt_indices = np.array([
            1,
            6,
            7,
            8,
            11,
            12,
            13,
            14,
            17,
            18,
            19,
            21,
            23,
            24,
            25,
            26,
            30,
            32,
            33,
            34,
            35,
            37,
            43,
            44,
            47,
            50,
        ])
        keep_indices = box_nms(boxes, scores, 0.5)
        keep_indices = np.sort(keep_indices)

        np.testing.assert_array_equal(keep_indices, gt_indices)
Пример #4
0
    def forward_for_single_feature_map(self, anchors, objectness,
                                       box_regression):
        """
        Arguments:
            anchors: list of BoxList
            objectness: tensor of size N, A, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        device = objectness.device
        N, A, H, W = objectness.shape

        num_anchors = A * H * W
        objectness = objectness.reshape(N, -1)  # Now [N, AHW]
        objectness = objectness.sigmoid()

        pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)
        objectness, topk_idx = objectness.topk(pre_nms_top_n,
                                               dim=1,
                                               sorted=True)

        use_fast_cuda_path = objectness.is_cuda
        if use_fast_cuda_path:
            # New code
            batch_idx = torch.arange(N, device=device)[:, None]

            # Get all image shapes, and cat them together
            image_shapes = [box.size[::-1] for box in anchors]
            image_shapes_cat = torch.cat([
                torch.tensor(box.size[::-1], device=objectness.device).float()
                for box in anchors
            ])

            # Get a single tensor for all anchors
            concat_anchors = torch.cat([a.bbox for a in anchors], dim=0)

            # Note: Take all anchors, we'll index accordingly inside the kernel
            # only take the anchors corresponding to the topk boxes
            concat_anchors = concat_anchors.reshape(N, -1,
                                                    4)  # [batch_idx, topk_idx]

            # Return pre-nms boxes, associated scores and keep flag
            # Encompasses:
            # 1. Box decode
            # 2. Box clipping
            # 3. Box filtering
            # At the end we need to keep only the proposals & scores flagged
            # Note: topk_idx, objectness are sorted => proposals, objectness, keep are also
            # sorted -- this is important later
            proposals, objectness, keep = C.GeneratePreNMSUprightBoxes(
                N,
                A,
                H,
                W,
                topk_idx,
                objectness.float(
                ),  # Need to cast these as kernel doesn't support fp16
                box_regression.float(),
                concat_anchors,
                image_shapes_cat,
                pre_nms_top_n,
                0,  # feature_stride
                self.min_size,
                self.box_coder.bbox_xform_clip,
                True)

            # view as [N, pre_nms_top_n, 4]
            proposals = proposals.view(N, -1, 4)
            objectness = objectness.view(N, -1)
        else:
            # put in the same format as anchors
            objectness = objectness.permute(0, 2, 3, 1).reshape(N, -1)
            objectness = objectness.sigmoid()
            box_regression = box_regression.view(N, -1, 4, H,
                                                 W).permute(0, 3, 4, 1, 2)
            box_regression = box_regression.reshape(N, -1, 4)

            num_anchors = A * H * W

            pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)
            objectness, topk_idx = objectness.topk(pre_nms_top_n,
                                                   dim=1,
                                                   sorted=True)

            # TODO check if this batch_idx is really needed
            batch_idx = torch.arange(N, device=device)[:, None]
            box_regression = box_regression[batch_idx, topk_idx]

            image_shapes = [box.size[::-1] for box in anchors]
            concat_anchors = torch.cat([a.bbox for a in anchors], dim=0)
            concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx,
                                                              topk_idx]

            proposals = self.box_coder.decode(box_regression.view(-1, 4),
                                              concat_anchors.view(-1, 4))

            proposals = proposals.view(N, -1, 4)

        # handle non-optimized path without changing loop
        if not use_fast_cuda_path:
            keep = [None for _ in range(num_images)]

        # TODO optimize / make batch friendly
        sampled_bboxes = []
        for proposal, score, im_shape, k in zip(proposals, objectness,
                                                image_shapes, keep):
            height, width = im_shape

            if proposal.dim() == 0:
                # TODO check what to do here
                # sampled_proposals.append(proposal.new())
                # sampled_scores.append(score.new())
                print("skipping")
                continue

            if False:  # currently slower
                # TODO: Don't do this, generate k directly in bytes
                k = k.byte()
                proposal = proposal[k, :]
                score = score[k]

                # perform NMS - returns index mask of kept boxes
                if self.nms_thresh > 0:
                    keep_mask = C.nms_gpu_upright(proposal, pre_nms_top_n,
                                                  self.nms_thresh)

                # keep map should still be ordered by score - keep only the post_nms_top_n entries
                if self.post_nms_top_n > 0:
                    keep_mask = keep_mask[:self.post_nms_top_n]

                # keep only selected boxes & scores
                keep_mask = keep_mask.long()
                p = proposal[keep_mask, :]
                score = score[keep_mask]
            else:
                if use_fast_cuda_path:
                    k = k.byte()
                    p = proposal.masked_select(k[:, None]).view(-1, 4)
                    score = score.masked_select(k)
                if self.nms_thresh > 0:
                    keep = box_nms(p, score, self.nms_thresh)
                    if self.post_nms_top_n > 0:
                        keep = keep[:self.post_nms_top_n]
                    p = p.index_select(0, keep)
                    score = score.index_select(0, keep)

            # Common code path
            sampled_bbox = BoxList(p, (width, height), mode="xyxy")
            sampled_bbox.add_field("objectness", score)
            sampled_bboxes.append(sampled_bbox)
            # TODO maybe also copy the other fields that were originally present?

        return sampled_bboxes