Пример #1
0
def find_optimal_path_n(zumy_pos, final_dest):
	if zumy_pos.ndim == 2:
		zumy_number = np.shape(zumy_pos)[0]
	else:
		zumy_number = 1
		return final_dest
	pair_list = range(zumy_number)
	possible_pairs_iter = permutations(pair_list)
	possible_pairs = np.asarray([np.asarray(elem) for elem in possible_pairs_iter])
	pair_for_cross_iter = combinations(pair_list, 2)
	pair_for_cross = np.asarray([np.asarray(elem) for elem in pair_for_cross_iter])
	possible_total_distance = np.zeros(math.factorial(zumy_number))
	possible_cross = np.zeros(math.factorial(zumy_number))
	for ii in range(math.factorial(zumy_number)):
		current_pair = possible_pairs[ii]
		for jj in range(zumy_number):
			possible_total_distance[ii] = possible_total_distance[ii] + \
					get_distance(zumy_pos[jj], final_dest[current_pair[jj]])
		for curr_pair_for_cross in pair_for_cross:
			possible_cross[ii] = possible_cross[ii] + \
					check_crossing(zumy_pos[curr_pair_for_cross[0]],
									final_dest[current_pair[curr_pair_for_cross[0]]],
									zumy_pos[curr_pair_for_cross[1]],
									final_dest[current_pair[curr_pair_for_cross[1]]])
	possible_total_penalty = 1000*possible_cross + possible_total_distance
	minimum_index = np.argmin(possible_total_penalty)
	best_pair = possible_pairs[minimum_index]
	new_final_dest_tuple = tuple(final_dest[order] for order in best_pair)
	new_final_dest = np.vstack(new_final_dest_tuple)
	return new_final_dest
Пример #2
0
 def testSmall(data, repeat1, repeat2):
     # Check that the shuffling is along the first axis.
     # The order of the elements in each subarray must not change.
     # This takes long time so `repeat1` need to be small.
     for i in range(repeat1):
         ret = mx.nd.random.shuffle(data)
         check_first_axis_shuffle(ret)
     # Count the number of each different outcome.
     # The sequence composed of the first elements of the subarrays is enough to discriminate
     # the outcomes as long as the order of the elements in each subarray does not change.
     count = {}
     stride = int(data.size / data.shape[0])
     for i in range(repeat2):
         ret = mx.nd.random.shuffle(data)
         h = str(ret.reshape((ret.size,))[::stride])
         c = count.get(h, 0)
         count[h] = c + 1
     # Check the total number of possible outcomes.
     # If `repeat2` is not large enough, this could fail with high probability.
     assert len(count) == math.factorial(data.shape[0])
     # The outcomes must be uniformly distributed.
     # If `repeat2` is not large enough, this could fail with high probability.
     for p in itertools.permutations(range(0, data.size - stride + 1, stride)):
         err = abs(1. * count[str(mx.nd.array(p))] / repeat2 - 1. / math.factorial(data.shape[0]))
         assert err < 0.01, "The absolute error {} is larger than the tolerance.".format(err)
     # Check symbol interface
     a = mx.sym.Variable('a')
     b = mx.sym.random.shuffle(a)
     c = mx.sym.random.shuffle(data=b, name='c')
     d = mx.sym.sort(c, axis=0)
     assert (d.eval(a=data, ctx=mx.current_context())[0] == data).prod() == 1
 def binomial_factorial(self,n,k):
     """Calculate binomial coefficient using math.factorial, for testing against binomial
     coefficients generated by other means."""
     if n >= k: 
         return int( round( math.factorial(n) / ( math.factorial(k) * math.factorial(n - k) ) ) )
     else:
         return 0
Пример #4
0
def f_f(j):
    n=2*j
    r=n//2
    num=math.factorial(n)
    den=math.factorial(n-r) * math.factorial(r)
    return num//den
    
Пример #5
0
def keyspace(n,m,k):

    lastterm = factorial(k) / (factorial(k - m))

    result = int(n * comb(n,m,exact=True) * lastterm)

    return result
Пример #6
0
    def __init__(self, f_center, samplerate, order=4, bw_factor=1.0):

        self.f_center = f_center
        self.samplerate = samplerate
        self.order = order
        self.bw_factor = bw_factor

        fc_erb = (GFB_L + self.f_center / GFB_Q) * self.bw_factor

        # equation (14), line 3 [Hohmann 2002]:
        a = np.pi * math.factorial(2.*order - 2.) * 2.**-(2.*order - 2.)
        b = math.factorial(order - 1.)**2
        a_gamma = a / b

        # equation (14), line 2 [Hohmann 2002]:
        b = fc_erb / a_gamma

        # equation (14), line 1 [Hohmann 2002]:
        lamda = np.exp(-2*np.pi*b / samplerate)

        # equation (10) [Hohmann 2002]:
        beta = 2 * np.pi * f_center / samplerate

        # equation (1), line 2 [Hohmann 2002]:
        self.coef = lamda * np.exp(0 + 1j*beta)

        # normalization factor from section 2.2 (text) [Hohmann 2002]:
        self.normalization_factor = 2. * (1 - np.abs(self.coef)) ** order
        self.state = np.zeros(order, dtype=np.complex, order='c')
def n_choose_k(n, k):
    """Computes n choose k."""

    if n < k:
        return 0
    else:
        return factorial(n) / factorial(k) / factorial(n - k)
Пример #8
0
    def __ClassShape(self, w, x, N1, N2, dz):

        # Class function; taking input of N1 and N2
        C = np.zeros(len(x), dtype=complex)
        for i in range(len(x)):
            C[i] = x[i]**N1*((1-x[i])**N2)

        # Shape function; using Bernstein Polynomials
        n = len(w) - 1  # Order of Bernstein polynomials

        K = np.zeros(n+1, dtype=complex)
        for i in range(0, n+1):
            K[i] = factorial(n)/(factorial(i)*(factorial((n)-(i))))

        S = np.zeros(len(x), dtype=complex)
        for i in range(len(x)):
            S[i] = 0
            for j in range(0, n+1):
                S[i] += w[j]*K[j]*x[i]**(j) * ((1-x[i])**(n-(j)))

        # Calculate y output
        y = np.zeros(len(x), dtype=complex)
        for i in range(len(y)):
            y[i] = C[i] * S[i] + x[i] * dz

        return y
Пример #9
0
def choose(a, b):
    if b == 0 or a == b:
        return 1
    else:
        numer = factorial(a)
        denom = factorial(b) * factorial(a-b)
        return numer//denom
Пример #10
0
def expand_power(u, n):

    if n < Number(0):
        return Number(1) / expand_power(_expand(u), abs(n))

    if isinstance(n, Rational):
        largest_int = Number(int(floor(n.value)))
        m = n - largest_int
        return expand_product(u ** m, expand_power(u, largest_int))

    if not isinstance(n, Integer):
        raise ValueError('n must be an integer, not {}'.format(repr(type(n))))
    elif n < Number(0):
        raise ValueError('n must be > 0, not {}'.format(n))

    if isinstance(u, Add):
        f = u.args[0]
        r = u - f
        s = Number(0)
        for k in range(n.value+1):
            c = Number(factorial(n.value)/(factorial(k) * factorial(n.value - k)))
            s = s + expand_product(c * f**Number(n.value-k), expand_power(r, Number(k)))
        return s
    else:
        return u**n
Пример #11
0
def probabilityOfKeepSet(keep_set):
	probability = math.factorial(len(keep_set))
	for value in range(1,7):
		num_value_in_set = sum([1 for x in keep_set if x == value])
		probability /= math.factorial(num_value_in_set)
	probability = float(probability)/6**len(keep_set) # Divide by all possible choices
	return probability
Пример #12
0
def naiveBayesMultinomial(value,frequency,adjustment = 1):
    if not value: return 0
    lim = 80
    if frequency > 92:
        return math.log(math.pow(value*adjustment,lim)/math.factorial(lim))
    else:
        return math.log(math.pow(value*adjustment,frequency)/math.factorial(frequency))
Пример #13
0
def multCoeff(x):
    a = 0
    b = 0
    c = 0
    d = 0
    e = 0
    f = 0
    g = 0
    h = 0
    i = 0
    for j in str(x):
        if j == '1':
            a += 1
        elif j == '2':
            b += 1
        elif j == '3':
            c += 1
        elif j == '4':
            d += 1
        elif j == '5':
            e += 1
        elif j == '6':
            f += 1
        elif j == '7':
            g += 1
        elif j == '8':
            h += 1
        elif j == '9':
            i += 1
    num = factorial(a+b+c+d+e+f+g+h+i)
    den = factorial(a)*factorial(b)*factorial(c)*factorial(d)*factorial(e)\
    *factorial(f)*factorial(g)*factorial(h)*factorial(i)
    return num/den
Пример #14
0
def fast_nth_perm(digits, n):

    #temporary storage variables
    curr_num = n - 1
    result = ""

    #go through the digits from the biggest down (i.e. 9 to 0)
    for i in reversed(range(len(digits))):
        #do integer division to get the quotient of curr_num / i!
        quotient = curr_num / math.factorial(int(i))
        #also get the remainder with mod
        remainder = curr_num % math.factorial(int(i))

        #the quotient is the index of the current digit in the desired
        #permutation. Add it to the result.
        result += (digits[quotient])
        # and remove it from the list of digits (each digit can only
        # appear once)
        digits = "%s%s" % (digits[:quotient], digits[quotient+1:])

        #update curr num to be the remainder of the previous
        #curr_num's division.
        curr_num = remainder
        
    return result
 def solve(self, cipher):
     """
     Labeled permutation variants
     :param cipher: the cipher
     """
     N, M = cipher
     return math.factorial(N+M-1)/math.factorial(N)/math.factorial(M-1)%MOD
Пример #16
0
def combsel():
	i = 0
	for n in range(1, 101):
		for r in range(1, n+1):
			if (math.factorial(n)/((math.factorial(r)*(math.factorial(n-r))))) > 1000000:
				i+=1
	return i
Пример #17
0
    def get_score(self, subtract_cards):
        same_form = 0
        form_larger = 0

        if self.straight:
            for i in range(0, 12 - len(self.cards)):
                and_cards = True
                for j in range(len(self.cards)):
                    and_cards = and_cards and subtract_cards[(i + j)* 4 + self.cards[j].suit]

                if and_cards:
                    same_form += 1
                    if self.cards[0].rank > i:
                        form_larger += 1
        else:
            for i in range(0, 12):
                and_cards = True
                for j in range(len(self.cards)):
                    and_cards = and_cards and subtract_cards[i* 4 + self.cards[j].suit]

                if and_cards:
                    same_form += 1
                    if self.cards[0].rank > i:
                        form_larger += 1

            count_rank_2 = 0
            for j in range(12*4, len(subtract_cards)):
                if subtract_cards[j]:
                    count_rank_2 += 1

            if count_rank_2 >= len(self.cards):
                same_form += math.factorial(count_rank_2)/(math.factorial(count_rank_2 - len(self.cards)) * math.factorial(len(self.cards)))

        return same_form if same_form == 0 else form_larger * 1.0/same_form
Пример #18
0
def digitFactorials():
   sum = 0
   for i in range(0, 10):
      for j in range(0, 10):
	 for k in range(0, 10):
	    for l in range(0, 10):
	       for m in range(0, 10):
		  for n in range(0, 10):
		     for o in range(0, 10):
			digitSum = math.factorial(i) + math.factorial(j) + math.factorial(k) + math.factorial(l) + math.factorial(m) + math.factorial(n) + math.factorial(o)
			if i == 0:
			   digitSum -= 1
			if i == 0 and j == 0:
			   digitSum -= 1
			if i == 0 and j == 0 and k == 0:
			   digitSum -= 1
			if i == 0 and j == 0 and k == 0 and l == 0:
			   digitSum -= 1
			if i == 0 and j == 0 and k == 0 and l == 0 and m == 0:
			   digitSum -= 1
			if i == 0 and j == 0 and k == 0 and l == 0 and m == 0 and n == 0:
			   digitSum -= 1
			num = i*1000000 + j*100000 + k*10000 + l*1000 + m*100 + n*10 + o
			if num == digitSum and num != 1 and num != 2:
			   print num
			   sum += num
Пример #19
0
 def count(self, N):
     # Is amazing easy the algoritm when understand. Is essential visualize
     # the structure of data, in this case, you should imagine than the SMN
     # is a line path that cross all points, without returning to one, after
     # having gone through.
     #Assume that N = 4 . Then there exists an MTF that follows the path ABCD,
     # with distance 2, 2 , 2, where A, B , C , D are the vertices. There is
     # also an MTF which follows the route ABDC with 2-2-2 away . These two
     # SMN share the same structure , the only thing that varies is the
     # order of the points. If you look , all combinations with 1-1-1 equals
     # the number of combination between two points is calculated as the
     # permutation of 4 points, must be reduced by half because the lines
     # connecting the vertices are unidirectional.
     numerodecombinaciones = math.factorial(N) / 2
     SMNs = list(itertools.product(reversed(range(1, 3)), repeat = (N - 1)))
     waystotal = 0
     for SMN in SMNs:
         waysSMN = 1
         for i in range(N):
             for j in range(i +2, N):
                 ways = 2
                 for k in range(i, j):
                     if SMN[k] == 2:
                         ways = 1
                 waysSMN *=  ways
                 waysSMN %=  1000000007
         waystotal += waysSMN
         waystotal %= 1000000007
     waystotal *= math.factorial(N) / 2
     waystotal %= 1000000007
     return waystotal
Пример #20
0
def nSphereVolume(n):
  '''
  Calculate the volume of a unit n-sphere. 

  TYPICAL USAGE
  =============
  
    >>> nSphereVolume(0)
    1
    >>> nSphereVolume(1)
    2
    >>> nSphereVolume(2)/pi
    1.0
    >>> nSphereVolume(3)/(pi**2)
    0.5
  
  REFERENCES
  ==========
  
    Equation 5.19.4, NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.6 of 2013-05-06.
  
  @param n: dimension of the n-sphere
  @type n: int
  @return: volume of the unit n-sphere
  @rtype: 
  '''
  if n%2 == 0:
    d = n/2
    return(pi**d/factorial(d))
  else:
    d = (n-1)/2
    return((2*((4*pi)**d)*factorial(d))/(factorial(2*d+1)))
Пример #21
0
def numtobasef(num,l): # computes the l-"digit" "base" factorial representation of num
    # there's probably a real name for this
    basef=[0]*l
    for i in range(l):
        basef[i]=num/factorial(l-i)
        num-=basef[i]*factorial(l-i)
    return basef
Пример #22
0
def GetWaveFunction(n,l,m,x,y,z):
    r = lambda x,y,z: numpy.sqrt(x**2+y**2+z**2)
    theta = lambda x,y,z: numpy.arccos(z/r(x,y,z))
    phi = lambda x,y,z: numpy.arctan2(y,x)
    #phi = lambda x,y,z: numpy.arctan(y/x)
    a0 = 1.
    R = lambda r,n,l: numpy.sqrt(((2.0/n/a0)**3)*(math.factorial(n-l-1))/(math.factorial(n+l))/2/n)*(2*r/n/a0)**l * numpy.exp(-r/n/a0) * scipy.special.genlaguerre(n-l-1,2*l+1)(2*r/n/a0)
    #R = lambda r,n,l: (2*r/n/a0)**l * numpy.exp(-r/n/a0) * scipy.special.genlaguerre(n-l-1,2*l+1)(2*r/n/a0)
    WF = lambda r,theta,phi,n,l,m: R(r,n,l) * scipy.special.sph_harm(m,l,phi,theta)
    absWF = lambda r,theta,phi,n,l,m: abs((WF(r,theta,phi,n,l,m))**2)
    wf = WF(r(x,y,z),theta(x,y,z),phi(x,y,z),n,l,m)
    w = absWF(r(x,y,z),theta(x,y,z),phi(x,y,z),n,l,m)
    w[numpy.isnan(w)]=0
    #wf[numpy.isnan(wf)]=0

    phase = numpy.angle(wf)
    realwf = numpy.imag(wf)*10
    #realwf = numpy.fabs(numpy.real(wf)*10)# need to by 10 because of the pg.isosurface() function
    #phase = numpy.array(w)
    #xsize = w.size/w[0].size
    #ysize = w[0].size/w[0][0].size
    #zsize = w[0][0].size
    #for i in range(0,xsize):
    #    for j in range(0,ysize):
    #        for k in range(0,zsize):
    #            #angular = numpy.arctan2(wf[i][j][k].imag,wf[i][j][k].real)
    #            #if angular < 0:
    #            #    phase[i][j][k] = angular+2*numpy.pi
    #            #else:
    #            #    phase[i][j][k] = angular
    #            phase[i][j][k] = numpy.arctan2(wf[i][j][k].imag,wf[i][j][k].real)
    phase[numpy.isnan(phase)]=0
    realwf[numpy.isnan(realwf)]=0
    return w,phase, realwf
def test_factorial():
    """ Tests the   factorial   function. """
    # DONE: 3a. Implement this function, using it to test the NEXT
    #   function. Write the two functions in whichever order you prefer.
    #   Include at least 4 tests.
    #
    # ** Use the  math.factorial  function as an ORACLE for testing. **
    print()
    print('--------------------------------------------------')
    print('Testing the   factorial   function:')
    print('--------------------------------------------------')
    actual_answer = factorial(5)
    oracle_answer = math.factorial(5)
    test_case = 'factorial(5).  Actual, Oracle answers:'
    print('   Called ', test_case, actual_answer, oracle_answer)
    actual_answer = factorial(8)
    oracle_answer = math.factorial(8)
    test_case = 'factorial(8).  Actual, Oracle answers:'
    print('   Called ', test_case, actual_answer, oracle_answer)
    actual_answer = factorial(11)
    oracle_answer = math.factorial(11)
    test_case = 'factorial(11).  Actual, Oracle answers:'
    print('   Called ', test_case, actual_answer, oracle_answer)
    actual_answer = factorial(14)
    oracle_answer = math.factorial(14)
    test_case = 'factorial(14).  Actual, Oracle answers:'
    print('   Called ', test_case, actual_answer, oracle_answer)
Пример #24
0
 def check_topological_embedding_brute(self, verbose=False):
     '''
     Brute-force combinatoric method to check topological embedding
     '''
     # Clear table and nodemap:
     self.T = { superN:{ subN:None for subN in self.subD.nodes } 
               for superN in self.superD.nodes }  
     self.AB_nodemap = None
     N = len(self.subD.nodes) # number of subdesign nodes
     if len(self.superD.nodes) < N:
         # shortcut - fewer nodes in superdesign
         self.AB_nodemap = None
         return False
     # compute number of matchings:
     num_matchings = math.factorial(len(self.subD.nodes))*math.factorial(len(self.superD.nodes))
     count = 0
     for sub_perm in permutations(self.subD.nodes):
         for super_perm in permutations(self.superD.nodes, N):
             #sys.stdout.write("%d  \r" % count )
             #sys.stdout.flush()    # carriage returns don't work in Eclipse :-(
             if verbose:
                 print str(count) + " / " + str(num_matchings)
                 count += 1
             self.AB_nodemap = dict (zip(sub_perm, super_perm))
             if self.check_vertex2vertex():
                 if self.check_edge2path():
                     if self.check_vertex_disjointness():
                         return True
     # no embedding found.
     self.AB_nodemap = None
     return False
Пример #25
0
    def odf_sh(self):
        r""" Calculates the real analytical ODF in terms of Spherical
        Harmonics.
        """
        # Number of Spherical Harmonics involved in the estimation
        J = (self.radial_order + 1) * (self.radial_order + 2) // 2

        # Compute the Spherical Harmonics Coefficients
        c_sh = np.zeros(J)
        counter = 0

        for l in range(0, self.radial_order + 1, 2):
            for n in range(l, int((self.radial_order + l) / 2) + 1):
                for m in range(-l, l + 1):

                    j = int(l + m + (2 * np.array(range(0, l, 2)) + 1).sum())

                    Cnl = (
                        ((-1) ** (n - l / 2)) /
                        (2.0 * (4.0 * np.pi ** 2 * self.zeta) ** (3.0 / 2.0)) *
                        ((2.0 * (4.0 * np.pi ** 2 * self.zeta) ** (3.0 / 2.0) *
                          factorial(n - l)) /
                         (gamma(n + 3.0 / 2.0))) ** (1.0 / 2.0)
                    )
                    Gnl = (gamma(l / 2 + 3.0 / 2.0) * gamma(3.0 / 2.0 + n)) / \
                        (gamma(l + 3.0 / 2.0) * factorial(n - l)) * \
                        (1.0 / 2.0) ** (-l / 2 - 3.0 / 2.0)
                    Fnl = hyp2f1(-n + l, l / 2 + 3.0 / 2.0, l + 3.0 / 2.0, 2.0)

                    c_sh[j] += self._shore_coef[counter] * Cnl * Gnl * Fnl
                    counter += 1

        return c_sh
Пример #26
0
def n_choose_k(n: int, k: int) -> int:
    """ Return the binomial coefficient for n choose k.

    The binomial coefficient is defined as:

        n choose k = n! / (k!(n-k)!)

    For a number of objects n, which k choices allowed, this function reports
    the number of ways to make the selection if order is disregarded.

    We define n choose k == 0 for k > n.

    Args:
        n (int): A positive integer indicating the possible number of items to
            select.
        k (int): A positive integer indicating the number of items selected.

    Returns:
        int: The result of n choose k.

    Raises:
        ValueError: if n or k are not non-negative integers.
    """
    # Check that n and k are allowed
    if not countable.is_nonnegative_integer(n):
        raise ValueError("n is a not a non-negative integer")
    if not countable.is_nonnegative_integer(k):
        raise ValueError("k is a not a non-negative integer")
    # We define n choose k for k > n as 0, that is, there are no way
    # to choose more items than exist in a set.
    if k > n:
        return 0
    # Compute and return
    return math.factorial(n) // (math.factorial(k) * math.factorial(n - k))
Пример #27
0
def basis(coords,b1,b2,nmax):

    hermites = np.loadtxt('hermite_coeffs.txt')
    xrot = coords[:,0]/b1
    yrot = coords[:,1]/b2
    npix = coords.shape[0]
    all_basis = np.zeros((npix,nmax+1,nmax+1))    

    gauss = np.exp(-0.5*(np.array(xrot)**2+np.array(yrot)**2))    
    n1 = 0                                  
    n2 = 0
    for n1 in range(0,nmax):
        n2 = 0
        while (n1+n2) <= nmax:
            norm = m.sqrt(m.pow(2,n1+n2)*m.pi*b1*b2*m.factorial(n1)*m.factorial(n2))
            k=0
            h1=0.
            h2=0.
            while (k <= n1):        
                h1 = h1+hermites[n1, k]*(np.array(xrot))**(n1-k)
                k=k+1
            k=0
            while (k <= n2):        
                h2 = h2+hermites[n2, k]*(np.array(yrot))**(n2-k)
                k=k+1
                
            all_basis[:, n1, n2] = gauss/norm*h1*h2;
            n2 = n2+1

    return all_basis
Пример #28
0
def dig_fact():
    
    # import timeit and start timer to measure time of function
    import timeit
    start = timeit.default_timer()
    
    import math # import math package for factorial function
    
    sum_total = 0 # initialize sum variable to hold sum of digit factorials
    
    list = [] # initalize list to hold all numbers which are equal to the sum of the factorial of their digits
    
    for i in range(3,math.factorial(9)*7): # iterate through range and check conditions per problem
   
        sum_total = 0 # reset sum variable for each number in range above
   
        for j in range(0,len(str(i))): # iterate through each digit of number in range above
                
            sum_total += math.factorial(int(str(i)[j])) # add factorial of each digit of number to "sum" variable for checking problem condition below
            
        if i == sum_total: # append number to list if it is equal to the sum of the factorial of its digits
            
            list.append(i)
            
    print sum(list) # return solution        
            
    # stop timer and print total elapsed time
    stop = timeit.default_timer()
    print "Total time:", stop - start, "seconds"
Пример #29
0
def g_statistic(X, p=None, idx=None):
    """
    return g statistic and p value
    arguments: 
        X - the periodicity profile (e.g. DFT magnitudes, autocorrelation etc)
            X needs to contain only those period values being considered, 
            i.e. only periods in the range [llim, ulim]
    """
    # X should be real
    X = abs(numpy.array(X))
    if p is None: 
        power = X.max(0)
        idx = X.argmax(0)
    else:
        assert idx is not None
        power = X[idx]
    g_obs = power/X.sum()
    M = numpy.floor(1/g_obs)
    pmax = len(X)
    
    result = numpy.zeros((int(M+1),), float)
    pmax_fact = factorial(pmax)
    for index in xrange(1, min(pmax, int(M))+1):
        v = (-1)**(index-1)*pmax_fact/factorial(pmax-index)/factorial(index)
        v *= (1-index*g_obs)**(pmax-1)
        result[index] = v
    
    p_val = result.sum()
    return g_obs, p_val
Пример #30
0
def tabela(n):
    somatorio = lambda termo: sum(termo(float(i)) for i in xrange(n))
    mysin = lambda x: somatorio(lambda i: (x ** (2 * i + 1)) * (-1) ** i / factorial(2 * i + 1))
    mycos = lambda x: somatorio(lambda i: (x ** (2 * i)) * (-1) ** i / factorial(2 * i))
    mytan = lambda x: mysin(x) / mycos(x)
    mypi = somatorio(lambda k: 4 * (-1) ** k / (2 * k + 1))
    mye = somatorio(lambda k: 1.0 / factorial(k))
    mypie = mypi / mye

    # calcular valores
    valores = [
        ['n={0}'.format(n), 'Ve', 'Va', 'Eabs', 'Erel'],
        ['pi', pi, mypi],
        ['e', e, mye],
        ['pi/e', pie, mypie],
        ['sen(pi/e)', sin(pie), mysin(mypie)],
        ['cos(pi/e)', cos(pie), mycos(mypie)],
        ['tg(pi/e)', tan(pie), mytan(mypie)],
    ]

    # calcular erros
    for v in valores[1:]:
        ve, va = v[1], v[2]
        eabs = ve - va
        erel = eabs / ve
        v.append(eabs)
        v.append(erel)

    # imprimir tabela e uma linha em branco
    print_table(valores)
    print
Пример #31
0
def comb(n, r):
    if n == r:
        return 1
    elif n < r:
        return 0
    return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))
Пример #32
0
 def __init__(self, n):
     self.n = n
     self.search_space_size = math.factorial(n)
     self.solution_size = n
     self.max_leave_out = self.solution_size - 1
(lunches == 'no food truck').all(axis=1).mean()

    # How likely is it that a food truck will show up sometime this week?

1 - (3 * .3**7)

((np.random.random((trials, 3)) > travis_park_food_truck).sum(axis=1) == 0).sum()/trials

(lunches == 'food truck').any(axis=1).mean()

# 8. If 23 people are in the same room, what are the odds that two of them 
# share a birthday? What if it's 20 people? 40?

    # (365! / (365 - 23)!) / (365^23)
import math
1 - ((math.factorial(365) / math.factorial(365-23)) / 365**23)
1 - ((math.factorial(365) / math.factorial(365-20)) / 365**20)
1 - ((math.factorial(365) / math.factorial(365-40)) / 365**40)

birthdays = pd.DataFrame(np.random.randint(1, 365, (10_000, 23)))
birthdays.count(axis=1)
birthdays
birthdays.iterrows()
birthdays.iloc[0, :]
birthdays[birthdays.nunique(axis=1) == birthdays.count(axis=1)].count()/trials
    #or
(birthdays.nunique(axis=1) == birthdays.count(axis=1)).mean()

    # with numpy
birthdays = (np.random.randint(1, 365, (10_000, 23)))
people = 23
Пример #34
0
import math

r_func = list(range(10**7))  # lets just check a ton of numbers lol

for i in r_func:
    if i == int(sum([math.factorial(int(k)) for k in str(i)])):
        print(i)
Пример #35
0
n = int(input())
time = []
mod = 1000000007
from collections import Counter
from math import factorial
for _ in range(n):
    t = int(input())
    time.append(t)
c = Counter(time)
ans = 1
for v in list(c.values()):
    ans *= factorial(v)
    ans %= mod
t = 0
time.sort()
for i in range(1, n):
    time[i] += time[i - 1]
for j in range(n):
    t += time[j]
print(t)
print(ans)
Пример #36
0
import math
# Questão 1
count = 0
for i in range(1, 5000001, 1):
    if i % 49 == 0 and i % 37 == 0 and i % 2 == 0:
        count += 1
print(count)

# Questão 2

x = []
for i in range(10):
    if i % 2 == 0:
        X = 3**i + 7 * (math.factorial(i))
    else:
        X = 2**i + 4 * math.log(i)
    x.append(X)
num = 0
soma = 0
posicao = 0
count = 0
for a in x:
    soma += a
    if a > num:
        num = a
        posicao = count
    count += 1
media = soma / 10
print('o maior número está na posição {0}'.format(posicao))
print('a média é {0:.2f}'.format(media))
 def n_choose(self, n, k):
     n_choose = (math.factorial(n)) / (math.factorial(k) *
                                       math.factorial(n - k))
     return n_choose
Пример #38
0
# Project Euler - Question 15

# Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, how many routes
# are there to the bottotm right corner through a 20x20 grid?

import time
from math import factorial

n = 20
ans = factorial(2*n)/(factorial(n)**2)

print(int(ans))
print('Time Elapsed:', time.perf_counter(), 'seconds')
Пример #39
0
def combinations_count(n, r):
    return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))
Пример #40
0
def factorial(num):
    print(math.factorial(num))
Пример #41
0
def lattice_paths(n):
    "Returns the total number of possible paths in an n-by-n grid from one corner to the opposite corner."
    routes = (math.factorial(2*n)/pow(math.factorial(n),2))
    return int(routes)
Пример #42
0
# 1 <= N <= 10**5
import math
N = int(input())

ans = math.factorial(N)
# for i in range(1, N+1):
#     ans = ans*i
print(ans % (10**9 + 7))
Пример #43
0
def fact(request, n):
    n = int(n)
    return HttpResponse("<h2>factorial is {}</h2>".format(factorial(n)))
Пример #44
0
def gridMovingCountByBinomial(x, y):
    # use explict // for true division, otherwise, a estimation will be given for classic division /
    return math.factorial(x + y) // (math.factorial(x) * math.factorial(y))
Пример #45
0
import math

print(math.ceil(3.90))  # This will return 4

print(math.floor(3.90))  # This will print 3

print(math.factorial(5))  # Print factorial of 5 ie- 120

print(math.gcd(36, 92))  # This will print greatest common divisor of two nos

print(math.sqrt(64))  # This will result the square root of the function
Пример #46
0
def fact(x, y):
    return math.factorial(x)
Пример #47
0
import math
n = int(input())
if n % 2 == 1:
    print(0)
else:
    print((math.factorial(n) // math.factorial(n // 2)**2) // (n // 2 + 1))
Пример #48
0
    alp.append(chr(ord('A') + i))
print(alp)

print("------------------------")

a = [[1, 3], [2, 6], [15, 18], [8, 10], [3, 10]]
a.sort()
print(a)

import bisect
b = [2, 4]
bisect.insort(a, b)
print(a)

print("------------------------")
b = [[5, 8], [9, 11], [12, 15], [15, 22]]
n = [1, 13]

l = len(b)
x = bisect.bisect(b, n)
if (b[x - 1] > n) and (n < b[x]):
    bisect.insort(b, n)

print(b)

print("------------------------")
import math
print(math.factorial(200))
print("------------------------")

print(1 / 2)
Пример #49
0
def get_r(x, n):
    return get_der(x + 1, n + 1) * (x ** (n + 1)) / math.factorial(n + 1)
import math
n = eval(input('Introduceti n: '))
s = 0
for i in range(1, n + 1):
    s += math.factorial(i)
print('Suma = ', s)
Пример #51
0
def combination(n, k):
    return int(
        (math.factorial(n)) / ((math.factorial(k)) * (math.factorial(n - k))))
Пример #52
0
def get_der(x, n):
    if n == 0:
        return np.log(x)
    else:
        return ((-1) ** (n + 1)) * 1.0 * math.factorial(n - 1) / (x ** n)
Пример #53
0
def _factorial(num):
    # sleep 2 seconds because it takes very less time
    # so that you can see the actual difference

    time.sleep(2)
    print(math.factorial(num))
Пример #54
0
import math
n = int(input("Kitne line chahiye bhiaya "))
for i in range(0, n + 1):
    print(" " * (n - i), end="")
    for j in range(0, i + 1):
        print(int(
            math.factorial(i) / (math.factorial(i - j) * math.factorial(j))),
              end=" 15")
        if j == i:
            print()
Пример #55
0
def permutation_formula(n, r):
    return factorial(n) // factorial(n-r)
Пример #56
0
def savitzky_golay(y,
                   window_size,
                   order,
                   deriv=0,
                   rate=1,
                   returnScoreList=False):
    '''
    Smooths over data using a Savitzky Golay filter
    This can either return a list of scores, or a list of peaks

    y : array-like, score list
    window_size : int, how big of a window to smooth
    order : what order polynomial
    returnScoreList : bool
    '''
    from math import factorial
    y = np.array(y)
    try:
        window_size = np.abs(np.int(window_size))
        order = np.abs(np.int(order))
    except ValueError:
        raise ValueError("window_size and order have to be of type int")
    if window_size % 2 != 1 or window_size < 1:
        raise TypeError("window_size size must be a positive odd number")
    if window_size < order + 2:
        raise TypeError("window_size is too small for the polynomials order")
    order_range = range(order + 1)
    half = (window_size - 1) // 2
    # precompute coefficients
    b = np.mat([[k**i for i in order_range] for k in range(-half, half + 1)])
    m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
    # pad the signal at the extremes with values taken from the signal itself
    firstvals = y[0] - np.abs(y[1:half + 1][::-1] - y[0])
    lastvals = y[-1] + np.abs(y[-half - 1:-1][::-1] - y[-1])
    y = np.concatenate((firstvals, y, lastvals))
    filtered = np.convolve(m[::-1], y, mode='valid')

    if returnScoreList:
        return np.convolve(m[::-1], y, mode='valid')

    # set everything between 1 and -inf to 1
    posFiltered = []
    for i in range(len(filtered)):
        if 1 > filtered[i] >= -np.inf:
            posFiltered.append(1)
        else:
            posFiltered.append(filtered[i])

    # use slopes to determine peaks
    peaks = []
    slopes = np.diff(posFiltered)
    la = 45  # how far in sequence to look ahead
    for i in range(len(slopes) - 50):
        if i > len(slopes) - la:  # probably irrelevant now
            dec = all(slopes[i + x] < 0 for x in range(1, 50))
            if slopes[i] > 0 and dec:
                if i not in peaks:
                    peaks.append(i)
        else:
            dec = all(slopes[i + x] < 0 for x in range(1, la))
            if slopes[i] > 0 and dec:
                peaks.append(i)
    return peaks
Пример #57
0
import math

a, b = map(int, input().split())
print(int(math.factorial(a) / (math.factorial(b) * math.factorial(a - b))))
Пример #58
0
def combination_formula(n, r):
    return factorial(n) // (factorial(r)*factorial(n-r))
# Project Euler --> https://projecteuler.net/problem=24
# Problem 24 : Lexicographic permutations

from math import factorial

digits = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
result = []
index = 999999

for j in range(9, -1, -1):
    n = int(index / factorial(j))
    result.append(str(digits[n]))
    index -= n * factorial(j)
    del digits[n]

print(''.join(result))
Пример #60
0
import math
n = int(input("Enter the value of n in Euler's formula: "))
sum1 = 1
for i in range(1, n + 1):
    sum1 = sum1 + (1 / math.factorial(i))
print("value of e is :", round(sum1, 2))

#Lucciffer