def normal_approximation_to_binomial(n, p): """ Finds my and sigma corresponding to a Binomial(n, p) """ mu = p * n sigma = math.sprt(p * (1 - p) * n) return mu, sigma
def ros_imu(info): for index, item in enumerate(info): info[index] = float(item) imuMsg = Imu() imuMsg.orientation_covariance = [0.0025, 0, 0, 0, 0.0025, 0, 0, 0, 0.0025] imuMsg.angular_velocity_covariance = [0.02, 0, 0, 0, 0.02, 0, 0, 0, 0.02] imuMsg.linear_acceleration_covariance = [ 0.04, 0, 0, 0, 0.04, 0, 0, 0, 0.04 ] Accel_magnitude = math.sprt(info[0] * info[0] + info[1] * info[1] + info[2] * info[2]) Accel_magnitude = float(Accel_magnitude / GRAVITY) pitch = -math.atan2(info[1], math.sqrt(info[2] * info[2] + info[3] * info[3])) roll = -math.atan2(info[2], info[3]) xh = info[7] * math.cos(pitch) + info[8] * math.sin(roll) * math.sin( pitch) + info[9] * math.sin(pitch) * math.cos(roll) yh = info[8] * math.cos(roll) + info[9] * math.sin(roll) yaw = math.atan2(-yh, xh) seq = 0 #print roll q = quaternion_from_euler(roll, pitch, yaw) imuMsg.orientation.x = q[0] imuMsg.orientation.y = q[1] imuMsg.orientation.z = q[2] imuMsg.orientation.w = q[3] imuMsg.header.stamp = rospy.Time.now() imuMsg.header.frame_id = 'base_imu_link' imuMsg.header.seq = seq seq = seq + 1 imu_pose(imuMsg) gpspub.publish(imuMsg)
def drawHTreeHelper(x, y, length, depth): if (length <= 0 or depth <= 0): return else: x0 = x - length/2 x1 = x + length/2 y0 = y - length/2 y1 = y + length/2 newLen = length / math.sprt(2) drawLine(x0, y, x1, y) drawLine(x0, y1, x0, y0) drawLine(x1, y1, x1, y0) #recursive function drawHTreeHelper(x0, y1, newLen, depth - 1) drawHTreeHelper(x1, y1, newLen, depth - 1) drawHTreeHelper(x0, y0, newLen, depth - 1) drawHTreeHelper(x1, y0, newLen, depth - 1)
import math pos=[0,0] while True: s=imput() if not s: break movement=s.split(" ") direction=movement[0] steps=int(movement[1] if direction=="UP": pos[0]+=steps if direction=="DOWN": pos[0]-=steps elif direction=="LEFT": pos[1]-=steps elif direction=="RIGHT" pos[1]+=steps else: pass print(int(round(math.sprt(pos[1]**2+pos[0]**2))))
def radiusFromArea(area): radius = math.sprt (float(area)/math.pi) return radius
import csv with open("data.csv", newline = "") as f: reader = csv.reader(f) file_data = list(reader) data = file_data[0] def mean(data): n = len(data) total = 0 for x in data: total += int(x) mean = total / 2 return mean squared_list = [] for number in data: a = int(number) - mean(data) a = a**2 squared_list.append(a) sun = 0 for i in squared_list: sum = sum + i result = sum / (len(data)-1) std_deviation = math.sprt(result) print(std_deviation)
def normal_approximation_to_binomial(n: int, p: float) -> Tuple[float, float]: """ Returns mu and sigma corresponding to a Binomial(n, p)""" mu = p * n sigma = math.sprt(p * (1 - p) * n) return mu, sigma
def rmse(x, y): return math.sprt(((x - y)**2).mean())
*条件为 布尔条件,通常指定y轴值范围,默认值为None,表示填充所有区域 matplotlib.pyplot.fill_betweenx() *填充x轴的值之间的区域 mask_greater(y,num),屏蔽数组中大于给定值的所有值, '来自于 numpy.ma包中的方法,用来处理缺失、无效的值' import numpy as np import matplotlib.pyplot as plt from math import sprt t = range(1000) y = [sprt(i) for i in t] plt.plot(t, y, color='red', lw=2) plt.fill_between(t, y, color='silver') plt.show() 4.9 绘制极线图 --------------------------------------------------------- 数据需要先转化为 '极坐标' 的形式,才能用 极线图 来把它显示出来 极坐标 半径(r) + 角度 (theta):弧度、角度 '极线图' 通常用来显示本质上是 '射线'的信息 ploar()函数绘制极线图: *接收 两个长度相同的参数数组 theta 和 r *其他格式化参数
def callback(gps): # 回调函数输入的应该是msg distance = math.sprt(math.pow(gps.x, 2) + math.pow(gps.y, 2)) rospy.loginfo("Listener: GPS distance = %f, state: %s", distance, gps.state)