def __init__(self, **options): self.derived = True S_Structure.__init__(self, FONT_SIZE_OFFSET, SHEET_LAYOUT_UNIT, SHEET_LAYOUT, SHEET_LAYOUT_TYPE) # BEGINING OF THE ZONE TO REWRITE (see explanations below) ------------ self.header = _("Name: .......................................") self.title = \ _("Short Test: converse and contrapositive of pythagorean theorem") self.subtitle = "" self.text = "" self.answers_title = _("Examples of answers") boolean_list = [True, False] ex1 = exercise.X_RightTriangle(x_kind='short_test', x_subkind='contrapositive_of_' 'pythagorean_theorem', use_decimals=randomly.pop(boolean_list)) ex2 = exercise.X_RightTriangle(x_kind='short_test', x_subkind='converse_of_pythagorean' '_theorem', use_decimals=randomly.pop(boolean_list)) boolean_list = [True, False] ex3 = exercise.X_RightTriangle(x_kind='short_test', x_subkind='converse_of_' 'pythagorean_theorem', use_decimals=randomly.pop(boolean_list)) ex4 = exercise.X_RightTriangle(x_kind='short_test', x_subkind='contrapositive_of_' 'pythagorean_theorem', use_decimals=randomly.pop(boolean_list)) if randomly.heads_or_tails(): x_list = [ex1, ex2, ex3, ex4] else: x_list = [ex3, ex4, ex1, ex2] self.exercises_list = x_list
def __init__(self, q_kind='default_nothing', **options): self.derived = True # The call to the mother class __init__() method will set the # fields matching optional arguments which are so far: # self.q_kind, self.q_subkind # plus self.options (modified) Q_Structure.__init__(self, q_kind, AVAILABLE_Q_KIND_VALUES, **options) # The purpose of this next line is to get the possibly modified # value of **options options = self.options init_caller = INIT_CALLER[q_kind] self.expandable_objct = None self.numeric_aux = None if q_kind == 'any_basic_expd': randomly_drawn = randomly.decimal_0_1() if randomly_drawn <= 0.25: self.expandable_objct = Expandable((RANDOMLY, 'monom0_polyn1'), randomly_reversed=0.5) elif randomly_drawn <= 0.50: self.expandable_objct = Expandable((RANDOMLY, 'monom1_polyn1'), randomly_reversed=0.5) else: self.expandable_objct = Expandable((RANDOMLY, 'polyn1_polyn1')) elif q_kind in ['monom0_polyn1', 'monom1_polyn1']: self.expandable_objct = Expandable((RANDOMLY, q_kind), randomly_reversed=0.5) elif q_kind == 'monom01_polyn1': self.expandable_objct = Expandable( (RANDOMLY, randomly.pop(['monom0_polyn1', 'monom1_polyn1'])), randomly_reversed=0.5) elif q_kind == 'polyn1_polyn1': self.expandable_objct = Expandable((RANDOMLY, 'polyn1_polyn1')) elif q_kind == 'sum_of_any_basic_expd': if self.q_subkind in ['harder', 'with_a_binomial']: # __ choices = ['monom0_polyn1', 'monom1_polyn1'] drawn_types = list() drawn_types.append(randomly.pop(choices)) if self.q_subkind == 'with_a_binomial': drawn_types.append('any_binomial') else: drawn_types.append('minus_polyn1_polyn1') aux_expd_list = list() for t in drawn_types: if t == 'any_binomial': aux_expd_list.append( BinomialIdentity((RANDOMLY, 'any'), **options)) else: aux_expd_list.append(Expandable((RANDOMLY, t))) final_list = list() for i in range(len(aux_expd_list)): final_list.append(randomly.pop(aux_expd_list)) self.expandable_objct = Sum(final_list) elif self.q_subkind == 'easy': choices = ['monom0_polyn1', 'monom1_polyn1'] aux_expd_list = list() aux_expd_list.append( Expandable((RANDOMLY, randomly.pop(choices)))) if randomly.heads_or_tails(): aux_expd_list.append(Expandable((RANDOMLY, 'sign_exp'))) else: aux_expd_list.append( Monomial((RANDOMLY, 15, randomly.integer(0, 2)))) final_list = list() for i in range(len(aux_expd_list)): final_list.append(randomly.pop(aux_expd_list)) self.expandable_objct = Sum(final_list) else: choices = [ 'monom0_polyn1', 'monom0_polyn1', 'monom1_polyn1', 'monom1_polyn1', 'polyn1_polyn1', 'minus_polyn1_polyn1' ] drawn_types = list() drawn_types.append(randomly.pop(choices)) drawn_types.append(randomly.pop(choices)) aux_expd_list = list() for element in drawn_types: aux_expd_list.append(Expandable((RANDOMLY, element))) aux_expd_list.append(Monomial((RANDOMLY, 15, 2))) final_list = list() for i in range(len(aux_expd_list)): final_list.append(randomly.pop(aux_expd_list)) self.expandable_objct = Sum(final_list) elif q_kind in ['sign_expansion', 'sign_expansion_short_test']: sign_exp_kind = options.get('sign_exp_kind', 0) if q_kind == 'sign_expansion_short_test': sign_exp_kind = 1 if sign_exp_kind == 0: sign_exp_kind = randomly.integer(1, 5) # Creation of the terms aux_terms_list = list() aux_expd_1 = Expandable((Monomial( (randomly.sign(), 1, 0)), Polynomial((RANDOMLY, 15, 2, 2)))) aux_expd_2 = Expandable((Monomial( (randomly.sign(), 1, 0)), Polynomial((RANDOMLY, 15, 2, 2)))) aux_expd_3 = Expandable((Monomial( (randomly.sign(), 1, 0)), Polynomial((RANDOMLY, 15, 2, 2)))) long_aux_expd = Expandable((Monomial( (randomly.sign(), 1, 0)), Polynomial((RANDOMLY, 15, 2, 3)))) if q_kind == 'sign_expansion_short_test': long_aux_expd = Expandable((Monomial( ('-', 1, 0)), Polynomial((RANDOMLY, 15, 2, 3)))) aux_monomial = Monomial((RANDOMLY, 15, 2)) # 1st kind: a Monomial and ± (long Polynomial) # (like in a short test) if sign_exp_kind == 1: aux_terms_list.append(long_aux_expd) aux_terms_list.append(aux_monomial) # 2d kind: ± (x+3) ± (4x - 7) elif sign_exp_kind == 2: aux_terms_list.append(aux_expd_1) aux_terms_list.append(aux_expd_2) # 3d kind: ± (x+3) ± (4x - 7) ± (x² - 5x) elif sign_exp_kind == 3: aux_terms_list.append(aux_expd_1) aux_terms_list.append(aux_expd_2) aux_terms_list.append(aux_expd_3) # 4th kind: ± (x+3) ± (4x - 7) ± Monomial elif sign_exp_kind == 4: aux_terms_list.append(aux_expd_1) aux_terms_list.append(aux_expd_2) aux_terms_list.append(aux_monomial) # 5th kind: ± (x+3) ± Monomial ± (long Polynomial) elif sign_exp_kind == 5: aux_terms_list.append(aux_expd_2) aux_terms_list.append(aux_monomial) aux_terms_list.append(long_aux_expd) # add as many possibilities as wanted, # don't forget to increase the last number here: # sign_exp_kind = randomly.integer(1, 5) (what's a bit above) # Now let's distribute the terms randomly final_terms_list = list() for i in range(len(aux_terms_list)): final_terms_list.append(randomly.pop(aux_terms_list)) self.expandable_objct = Sum(final_terms_list) elif q_kind in [ 'numeric_sum_square', 'numeric_difference_square', 'numeric_squares_difference' ]: # __ self.expandable_objct = init_caller( (options['couple'][0], options['couple'][1]), **options) if q_kind in ['numeric_sum_square', 'numeric_difference_square']: self.numeric_aux = Sum( [options['couple'][0], options['couple'][1]]).reduce_() self.numeric_aux.set_exponent(2) else: # squares_difference's case aux1 = Sum([options['couple'][0], options['couple'][1]]).reduce_() temp = options['couple'][1].clone() temp.set_sign('-') aux2 = Sum([options['couple'][0], temp]).reduce_() self.numeric_aux = Product([aux1, aux2]) else: if q_kind == 'any_binomial': q_kind = 'any' self.expandable_objct = init_caller((RANDOMLY, q_kind), **options) # Creation of the expression: number = 0 if 'expression_number' in options \ and is_.a_natural_int(options['expression_number']): # __ number = options['expression_number'] self.expression = Expression(number, self.expandable_objct) if self.numeric_aux is not None: self.numeric_aux = Expression(number, self.numeric_aux)
def __init__(self, x_kind='default_nothing', **options): self.derived = True X_Structure.__init__(self, x_kind, AVAILABLE_X_KIND_VALUES, X_LAYOUTS, X_LAYOUT_UNIT, **options) # The purpose of this next line is to get the possibly modified # value of **options options = self.options default_question = question.Q_AlgebraExpressionExpansion # TEXTS OF THE EXERCISE self.text = {'exc': _("Expand and reduce") + ": ", 'ans': ""} # alternate texts section if self.x_subkind == 'three_numeric_binomials': self.text = { 'exc': _("Calculate thanks to a binomial " "identity:"), 'ans': "" } # PREFORMATTED EXERCISES if self.x_kind == 'short_test': if self.x_subkind == 'sign_expansion': q = default_question(q_kind='sign_expansion_short_test', expression_number=self.start_number, **options) self.questions_list.append(q) elif self.x_subkind == 'medium_level': q = default_question(q_kind='monom01_polyn1', expression_number=self.start_number, **options) self.questions_list.append(q) q = default_question(q_kind='polyn1_polyn1', expression_number=self.start_number, **options) self.questions_list.append(q) q = default_question(q_kind='sum_of_any_basic_expd', expression_number=self.start_number, **options) self.questions_list.append(q) elif self.x_subkind == 'three_binomials': kinds_list = [ 'sum_square', 'difference_square', 'squares_difference' ] for i in range(3): q = default_question(q_kind=randomly.pop(kinds_list), expression_number=i, **options) self.questions_list.append(q) elif self.x_subkind == 'three_numeric_binomials': a_list1 = [20, 30, 40, 50, 60, 70, 80, 90, 100] a_list2 = [200, 300, 400, 500, 600, 700, 800, 1000] b_list = [1, 2, 3] a1_choice = randomly.pop(a_list2) b1_choice = randomly.pop(b_list) a2_choice = randomly.pop(a_list1) b2_choice = randomly.pop(b_list) a3_choice = randomly.pop(a_list1) b3_choice = randomly.pop(b_list) a1 = Monomial(('+', a1_choice, 0)) b1 = Monomial(('+', b1_choice, 0)) a2 = Monomial(('+', a2_choice, 0)) b2 = Monomial(('+', b2_choice, 0)) a3 = Monomial(('+', a3_choice, 0)) b3 = Monomial(('+', b3_choice, 0)) kinds_list = [ 'numeric_sum_square', 'numeric_difference_square', 'numeric_squares_difference' ] monomials_to_use = [(a1, b1), (a2, b2), (a3, b3)] ordered_kinds_list = [] squares_differences_option = [0, 0, 0] for i in range(3): ordered_kinds_list.append(randomly.pop(kinds_list)) if ordered_kinds_list[i] == 'numeric_difference_square': monomials_to_use[i][1].set_sign('-') elif ordered_kinds_list[i] == 'numeric_squares_difference': squares_differences_option[i] = 1 for i in range(3): if squares_differences_option[i] == 1: q = default_question(q_kind=ordered_kinds_list[i], couple=monomials_to_use[i], squares_difference=True, expression_number=i, **options) else: q = default_question(q_kind=ordered_kinds_list[i], couple=monomials_to_use[i], expression_number=i, **options) self.questions_list.append(q) else: # default short_test option if randomly.heads_or_tails(): q1 = default_question(q_kind='monom0_polyn1', expression_number=0 + self.start_number) q2 = default_question(q_kind='monom1_polyn1', expression_number=1 + self.start_number, reversed='OK') else: q1 = default_question(q_kind='monom0_polyn1', reversed='OK', expression_number=0 + self.start_number) q2 = default_question(q_kind='monom1_polyn1', expression_number=1 + self.start_number) q3 = default_question(q_kind='polyn1_polyn1', expression_number=2 + self.start_number) self.questions_list.append(q1) self.questions_list.append(q2) self.questions_list.append(q3) elif self.x_kind == 'mini_test': if self.x_subkind == 'two_expansions_hard': if randomly.heads_or_tails(): q1 = default_question(q_kind='sum_of_any_basic_expd', q_subkind='harder', expression_number=0 + self.start_number) q2 = default_question(q_kind='sum_of_any_basic_expd', q_subkind='with_a_binomial', expression_number=1 + self.start_number) else: q1 = default_question(q_kind='sum_of_any_basic_expd', q_subkind='with_a_binomial', expression_number=0 + self.start_number) q2 = default_question(q_kind='sum_of_any_basic_expd', q_subkind='harder', expression_number=1 + self.start_number) self.questions_list.append(q1) self.questions_list.append(q2) elif self.x_subkind == 'two_randomly': if randomly.heads_or_tails(): q = default_question(q_kind='sign_expansion_short_test', expression_number=self.start_number, **options) self.questions_list.append(q) q = default_question(q_kind='polyn1_polyn1', expression_number=self.start_number + 1, **options) self.questions_list.append(q) else: q = default_question(q_kind='monom01_polyn1', expression_number=self.start_number, **options) self.questions_list.append(q) q = default_question(q_kind='sum_of_any_basic_expd', q_subkind='easy', expression_number=self.start_number + 1, **options) self.questions_list.append(q) elif self.x_kind == 'preformatted': # Mixed expandable expressions from the following types: # 0-degree Monomial × (1st-degree Polynomial) # 1-degree Monomial × (1st-degree Polynomial) # The Monomial & the polynomial may be swapped: it depends # if the option 'reversed' has been given in # argument in this method if self.x_subkind == 'mixed_monom_polyn1': choices_list = list() ratio = DEFAULT_RATIO_MIXED_MONOM_POLYN1 if 'ratio_mmp' in options \ and is_.a_number(options['ratio_mmp']) \ and options['ratio_mmp'] > 0 \ and options['ratio_mmp'] < 1: # __ ratio = options['ratio_mmp'] else: raise error.ArgumentNeeded("the ratio_mmp option " "because the " "mixed_monom_polyn1 option " "has been specified.") for i in range(int(self.q_nb * ratio) + 1): choices_list.append('monom0_polyn1') for i in range(int(self.q_nb - self.q_nb * ratio)): choices_list.append('monom1_polyn1') temp_nb = len(choices_list) for i in range(temp_nb): choice = randomly.pop(choices_list) if choice == 'monom0_polyn1': q = default_question(q_kind='monom0_polyn1', expression_number=i + self.start_number, **options) self.questions_list.append(q) else: q = default_question(q_kind='monom1_polyn1', expression_number=i + self.start_number, **options) self.questions_list.append(q) # OTHER EXERCISES else: for i in range(self.q_nb): q = default_question(q_kind=self.x_subkind, expression_number=i + self.start_number, **options) self.questions_list.append(q)
def __init__(self, x_kind='default_nothing', **options): self.derived = True X_Structure.__init__(self, x_kind, AVAILABLE_X_KIND_VALUES, X_LAYOUTS, X_LAYOUT_UNIT, **options) # The purpose of this next line is to get the possibly modified # value of **options options = self.options # BEGINING OF THE ZONE TO REWRITE (see explanations below) ------------ # should be default_question = question.Something default_question = question.Q_RightTriangle # TEXTS OF THE EXERCISE self.text = {'exc': "", 'ans': "" } # alternate texts section # if self.x_kind == 'short_test' \ # and self.x_subkind == 'pythagorean_theorem_one_of_each': # # __ # self.text = {'exc': "", # 'ans': _("The drawings below are only sketches.") # } # # elif self.x_kind == '...': # self.text = {'exc': "", # 'ans': "" # } # SHORT TEST & OTHER PREFORMATTED EXERCISES units = ['m', 'dm', 'cm', 'mm'] angles = randomly.pop([[0, 180], [90, 270]]) random_signs = [randomly.pop([-1, 1]), randomly.pop([-1, 1])] if self.x_kind == 'short_test': if self.x_subkind == 'pythagorean_theorem_one_of_each': q_subkinds = ['calculate_hypotenuse', 'calculate_one_leg'] if randomly.heads_or_tails(): self.questions_list.append( default_question(q_kind='pythagorean_theorem', q_subkind=randomly.pop(q_subkinds), use_pythagorean_triples=True, use_decimals=True, final_unit=randomly.pop(units), number_of_the_question='a', figure_in_the_text=False, rotate_around_barycenter=randomly .pop(angles) + random_signs[0] * randomly.integer(0, 20))) self.questions_list.append( default_question(q_kind='pythagorean_theorem', q_subkind=randomly.pop(q_subkinds), use_pythagorean_triples=False, round_to=randomly.pop([TENTH, HUNDREDTH]), final_unit=randomly.pop(units), number_of_the_question='b', figure_in_the_text=False, rotate_around_barycenter=randomly .pop(angles) + random_signs[1] * randomly.integer(0, 20))) else: self.questions_list.append( default_question(q_kind='pythagorean_theorem', q_subkind=randomly.pop(q_subkinds), use_pythagorean_triples=False, round_to=randomly.pop([TENTH, HUNDREDTH]), final_unit=randomly.pop(units), number_of_the_question='a', figure_in_the_text=False, rotate_around_barycenter=randomly .pop(angles) + random_signs[0] * randomly.integer(0, 20))) self.questions_list.append( default_question(q_kind='pythagorean_theorem', q_subkind=randomly.pop(q_subkinds), use_pythagorean_triples=True, use_decimals=True, final_unit=randomly.pop(units), number_of_the_question='b', figure_in_the_text=False, rotate_around_barycenter=randomly .pop(angles) + random_signs[1] * randomly.integer(0, 20))) elif self.x_subkind == 'converse_of_pythagorean_theorem': self.questions_list.append( default_question(q_kind='converse_of_pythagorean_theorem', q_subkind='default', use_pythagorean_triples=True, # use_decimals=randomly.heads_or_tails(), final_unit=randomly.pop(units), figure_in_the_text=False, rotate_around_barycenter=randomly .pop(angles) + random_signs[0] * randomly.integer(0, 20), **options)) elif self.x_subkind == 'contrapositive_of_pythagorean_theorem': self.questions_list.append( default_question(q_kind='contrapositive_of_' 'pythagorean_theorem', q_subkind='default', # use_decimals=randomly.heads_or_tails(), final_unit=randomly.pop(units), figure_in_the_text=False, rotate_around_barycenter=randomly .pop(angles) + random_signs[0] * randomly.integer(0, 20), **options))
def __init__(self, q_kind='default_nothing', **options): self.derived = True # The call to the mother class __init__() method will set the # fields matching optional arguments which are so far: # self.q_kind, self.q_subkind # plus self.options (modified) Q_Structure.__init__(self, q_kind, AVAILABLE_Q_KIND_VALUES, **options) # The purpose of this next line is to get the possibly modified # value of **options options = self.options # That's the number of the question, not of the expressions it might # contain ! self.number = "" if 'number_of_questions' in options: self.number = options['number_of_questions'] self.objct = None # 1st OPTION if q_kind == 'fraction_simplification': root = randomly.integer(2, 19, weighted_table=[ 0.225, 0.225, 0, 0.2, 0, 0.2, 0, 0, 0, 0.07, 0, 0.0375, 0, 0, 0, 0.0375, 0, 0.005 ]) factors_list = [j + 1 for j in range(10)] ten_power_factor1 = 1 ten_power_factor2 = 1 if 'with_ten_powers' in options \ and is_.a_number(options['with_ten_powers']) \ and options['with_ten_powers'] <= 1 \ and options['with_ten_powers'] >= 0: # __ if randomly.decimal_0_1() < options['with_ten_powers']: ten_powers_list = [10, 10, 100, 100] ten_power_factor1 = randomly.pop(ten_powers_list) ten_power_factor2 = randomly.pop(ten_powers_list) self.objct = Fraction( ('+', root * randomly.pop(factors_list) * ten_power_factor1, root * randomly.pop(factors_list) * ten_power_factor2)) # 2d & 3d OPTIONS # Fractions Products | Quotients elif q_kind in ['fractions_product', 'fractions_quotient']: # In some cases, the fractions will be generated # totally randomly if randomly.decimal_0_1() < 0: lil_box = [n + 2 for n in range(18)] a = randomly.pop( lil_box, weighted_table=FRACTION_PRODUCT_AND_QUOTIENT_TABLE) b = randomly.pop( lil_box, weighted_table=FRACTION_PRODUCT_AND_QUOTIENT_TABLE) lil_box = [n + 2 for n in range(18)] c = randomly.pop( lil_box, weighted_table=FRACTION_PRODUCT_AND_QUOTIENT_TABLE) d = randomly.pop( lil_box, weighted_table=FRACTION_PRODUCT_AND_QUOTIENT_TABLE) f1 = Fraction((randomly.sign(plus_signs_ratio=0.75), Item((randomly.sign(plus_signs_ratio=0.80), a)), Item( (randomly.sign(plus_signs_ratio=0.80), b)))) f2 = Fraction((randomly.sign(plus_signs_ratio=0.75), Item((randomly.sign(plus_signs_ratio=0.80), c)), Item( (randomly.sign(plus_signs_ratio=0.80), d)))) # f1 = f1.simplified() # f2 = f2.simplified() # In all other cases (80%), we'll define a "seed" a plus two # randomly numbers i and j to form the Product | Quotient: # a×i / b × c / a × j # Where b is a randomly number coprime to a×i # and c is a randomly number coprime to a×j else: a = randomly.integer(2, 8) lil_box = [i + 2 for i in range(7)] i = randomly.pop(lil_box) j = randomly.pop(lil_box) b = randomly.coprime_to(a * i, [n + 2 for n in range(15)]) c = randomly.not_coprime_to(b, [n + 2 for n in range(30)], excepted=a * j) f1 = Fraction( (randomly.sign(plus_signs_ratio=0.75), Item((randomly.sign(plus_signs_ratio=0.80), a * i)), Item((randomly.sign(plus_signs_ratio=0.80), b)))) f2 = Fraction( (randomly.sign(plus_signs_ratio=0.75), Item((randomly.sign(plus_signs_ratio=0.80), c)), Item((randomly.sign(plus_signs_ratio=0.80), a * j)))) if randomly.heads_or_tails(): f3 = f1.clone() f1 = f2.clone() f2 = f3.clone() if q_kind == 'fractions_quotient': f2 = f2.invert() if q_kind == 'fractions_product': self.objct = Product([f1, f2]) elif q_kind == 'fractions_quotient': self.objct = Quotient(('+', f1, f2, 1, 'use_divide_symbol')) # 4th OPTION # Fractions Sums elif q_kind == 'fractions_sum': randomly_position = randomly\ .integer(0, 16, weighted_table=FRACTIONS_SUMS_SCALE_TABLE) chosen_seed_and_generator = FRACTIONS_SUMS_TABLE[randomly_position] seed = randomly.integer(2, chosen_seed_and_generator[1]) # The following test is only intended to avoid having "high" # results too often. We just check if the common denominator # will be higher than 75 (arbitrary) and if yes, we redetermine # it once. We don't do it twice since we don't want to totally # forbid high denominators. if seed * chosen_seed_and_generator[0][0] \ * chosen_seed_and_generator[0][1] >= 75: # __ seed = randomly.integer(2, chosen_seed_and_generator[1]) lil_box = [0, 1] gen1 = chosen_seed_and_generator[0][lil_box.pop()] gen2 = chosen_seed_and_generator[0][lil_box.pop()] den1 = Item(gen1 * seed) den2 = Item(gen2 * seed) temp1 = randomly.integer(1, 20) temp2 = randomly.integer(1, 20) num1 = Item(temp1 // gcd(temp1, gen1 * seed)) num2 = Item(temp2 // gcd(temp2, gen2 * seed)) f1 = Fraction((randomly.sign(plus_signs_ratio=0.7), num1, den1)) f2 = Fraction((randomly.sign(plus_signs_ratio=0.7), num2, den2)) self.objct = Sum([f1.simplified(), f2.simplified()]) # 5th # still to imagine:o) # Creation of the expression: number = 0 if 'expression_number' in options \ and is_.a_natural_int(options['expression_number']): # __ number = options['expression_number'] self.expression = Expression(number, self.objct)
def level_02(q_subkind, **options): max_coeff = 20 if 'max_coeff' in options and is_.an_integer(options['max_coeff']): max_coeff = options['max_coeff'] attribute_a_minus_sign = 'randomly' if 'minus_sign' in options and options['minus_sign']: attribute_a_minus_sign = 'yes' elif 'minus_sign' in options and not options['minus_sign']: attribute_a_minus_sign = 'no' # Creation of the objects # The three Monomials: ax², bx and c # Maybe we don't need to keep the integer values... a_val = randomly.integer(1, max_coeff) b_val = randomly.integer(1, max_coeff) c_val = randomly.integer(1, max_coeff) if q_subkind in [ 'type_1_A0', 'type_1_B0', 'type_1_C0', 'type_1_A1', 'type_1_B1', 'type_1_C1' ]: # __ c_val = randomly.integer(2, max_coeff) ax2 = Monomial((randomly.sign(), a_val, 2)) bx = Monomial((randomly.sign(), b_val, 1)) c = Monomial((randomly.sign(), c_val, 0)) # deg1: mx + p # and we need two of them deg1 = [] for i in range(2): deg1_mx = Monomial((randomly.sign(), randomly.integer(1, max_coeff), 1)) deg1_p = None if q_subkind in [ 'type_1_A0', 'type_1_B0', 'type_1_C0', 'type_1_D0', 'type_1_E0', 'type_1_F0', 'type_1_G0', 'type_1_H0', 'type_1_I0', 'type_1_A1', 'type_1_B1', 'type_1_D1', 'type_1_E1', 'type_1_G1', 'type_1_H1', 'type_4_A0' ]: # __ deg1_p = Monomial( (randomly.sign(), randomly.integer(1, max_coeff), 0)) else: deg1_p = Monomial( (randomly.sign(), randomly.integer(0, max_coeff), 0)) if not deg1_p.is_null(): lil_box = [deg1_mx, deg1_p] deg1.append( Polynomial([randomly.pop(lil_box), randomly.pop(lil_box)])) else: deg1.append(deg1_mx) # deg2: mx² + px + r # and we also need two of them deg2 = [] for i in range(2): deg2_mx2 = Monomial((randomly.sign(), randomly.integer(1, max_coeff), 2)) deg2_px = None deg2_r = None if q_subkind in [ 'type_1_A0', 'type_1_B0', 'type_1_C0', 'type_1_D0', 'type_1_E0', 'type_1_F0', 'type_1_G0', 'type_1_H0', 'type_1_I0', 'type_1_A1', 'type_1_B1', 'type_1_D1', 'type_1_E1', 'type_1_G1', 'type_1_H1' ]: # __ if randomly.heads_or_tails(): deg2_px = Monomial( (randomly.sign(), randomly.integer(1, max_coeff), 1)) deg2_r = Monomial( (randomly.sign(), randomly.integer(0, max_coeff), 0)) else: deg2_px = Monomial( (randomly.sign(), randomly.integer(0, max_coeff), 1)) deg2_r = Monomial( (randomly.sign(), randomly.integer(1, max_coeff), 0)) else: deg2_px = Monomial( (randomly.sign(), randomly.integer(0, max_coeff), 1)) deg2_r = Monomial( (randomly.sign(), randomly.integer(0, max_coeff), 0)) lil_box = [deg2_mx2] if not deg2_px.is_null(): lil_box.append(deg2_px) if not deg2_r.is_null(): lil_box.append(deg2_r) monomials_list_for_deg2 = [] for i in range(len(lil_box)): monomials_list_for_deg2.append(randomly.pop(lil_box)) deg2.append(Polynomial(monomials_list_for_deg2)) # Let's attribute the common factor C according to the required type # (NB: expression ± C×F1 ± C×F2) C = None if q_subkind in [ 'type_1_A0', 'type_1_B0', 'type_1_C0', 'type_1_A1', 'type_1_B1' ]: # __ C = c elif q_subkind in [ 'type_1_D0', 'type_1_E0', 'type_1_F0', 'type_1_D1', 'type_1_E1' ]: # __ C = bx elif q_subkind in [ 'type_1_G0', 'type_1_H0', 'type_1_I0', 'type_1_G1', 'type_1_H1' ]: # __ C = ax2 elif q_subkind in [ 'type_2_A0', 'type_2_B0', 'type_2_C0', 'type_2_A1', 'type_2_B1', 'type_4_A0' ]: # __ C = Polynomial([bx, c]) elif q_subkind in [ 'type_2_D0', 'type_2_E0', 'type_2_F0', 'type_2_D1', 'type_2_E1' ]: # __ C = Polynomial([ax2, c]) elif q_subkind in [ 'type_3_A0', 'type_3_B0', 'type_3_C0', 'type_3_A1', 'type_3_B1' ]: # __ C = Polynomial([ax2, bx, c]) # Let's attribute F1 and F2 according to the required type # (NB: expression ± C×F1 ± C×F2) F1 = None F2 = None if q_subkind in [ 'type_1_A0', 'type_1_A1', 'type_1_D0', 'type_1_D1', 'type_1_G0', 'type_1_G1', 'type_2_A0', 'type_2_A1', 'type_2_D0', 'type_2_D1', 'type_3_A0', 'type_3_A1' ]: # __ F1 = deg1[0] F2 = deg1[1] elif q_subkind in [ 'type_1_B0', 'type_1_B1', 'type_1_E0', 'type_1_E1', 'type_1_H0', 'type_1_H1', 'type_2_B0', 'type_2_B1', 'type_2_E0', 'type_2_E1', 'type_3_B0', 'type_3_B1' ]: # __ F1 = deg2[0] F2 = deg2[1] elif q_subkind in [ 'type_1_C0', 'type_1_F0', 'type_1_I0', 'type_2_C0', 'type_2_F0', 'type_3_C0' ]: # __ F1 = deg1[0] F2 = deg2[0] # The special case type_4_A0: (ax+b)² + (ax+b)×deg1' # aka C² + C×F1 elif q_subkind == 'type_4_A0': F1 = C.clone() F2 = deg1[0] # Let's put a "1" somewhere in the type_*_*1 if q_subkind in [ 'type_1_A1', 'type_1_D1', 'type_1_G1', 'type_2_A1', 'type_2_D1', 'type_3_A1', 'type_1_B1', 'type_1_E1' 'type_1_H1', 'type_2_B1', 'type_2_E1', 'type_3_B1' ]: # __ if randomly.heads_or_tails(): F1 = Item(1) else: F2 = Item(1) # Let's possibly attribute a minus_sign # (NB: expression ± C×F1 ± C×F2) minus_sign = None # this will contain the name of the factor having # a supplementary minus sign in such cases: # C×F1 - C×F2# - C×F1 + C×F2 # in all the following cases, it doesn't bring anything to attribute # a minus sign if ((q_subkind in ['type_1_A0', 'type_1_B0', 'type_1_C0', 'type_1_A1', 'type_1_B1'] and c_val < 0) or ((q_subkind in ['type_1_D0', 'type_1_E0', 'type_1_F0', 'type_1_D1', 'type_1_E1']) and b_val < 0) or ((q_subkind in ['type_1_G0', 'type_1_H0', 'type_1_I0', 'type_1_G1', 'type_1_H1']) and a_val < 0)): # __ pass # here we let minus_sign equal to None # otherwise, let's attribute one randomly, # depending on attribute_a_minus_sign else: if attribute_a_minus_sign in ['yes', 'randomly']: # __ if (attribute_a_minus_sign == 'yes' or randomly.heads_or_tails()): # __ if randomly.heads_or_tails(): minus_sign = "F1" else: minus_sign = "F2" else: pass # here we let minus_sign equal to None # Now let's build the expression ! expression = None box_product1 = [C, F1] box_product2 = [C, F2] if q_subkind == 'type_4_A0': CF1 = Product([C]) CF1.set_exponent(Value(2)) else: CF1 = Product([randomly.pop(box_product1), randomly.pop(box_product1)]) CF2 = Product([randomly.pop(box_product2), randomly.pop(box_product2)]) if minus_sign == "F1": if len(F1) >= 2: CF1 = Expandable((Item(-1), CF1)) else: CF1 = Product([Item(-1), CF1]) elif minus_sign == "F2": if len(F2) >= 2: CF2 = Expandable((Item(-1), CF2)) else: CF2 = Product([Item(-1), CF2]) expression = Sum([CF1, CF2]) # Now let's build the factorization steps ! steps = [] steps.append(expression) F1F2_sum = None if minus_sign is None: F1F2_sum = Sum([F1, F2]) elif minus_sign == "F1": if len(F1) >= 2: F1F2_sum = Sum([Expandable((Item(-1), F1)), F2]) else: F1F2_sum = Sum([Product([Item(-1), F1]), F2]) elif minus_sign == "F2": if len(F2) >= 2: F1F2_sum = Sum([F1, Expandable((Item(-1), F2))]) else: F1F2_sum = Sum([F1, Product([Item(-1), F2])]) temp = Product([C, F1F2_sum]) temp.set_compact_display(False) steps.append(temp) F1F2_sum = F1F2_sum.expand_and_reduce_next_step() while F1F2_sum is not None: steps.append(Product([C, F1F2_sum])) F1F2_sum = F1F2_sum.expand_and_reduce_next_step() # This doesn't fit the need, because too much Products are # wrongly recognized as reducible ! if steps[len(steps) - 1].is_reducible(): steps.append(steps[len(steps) - 1].reduce_()) return steps
def level_01(q_subkind, **options): if q_subkind == 'default' \ or q_subkind == 'three_terms' \ or q_subkind == 'ax + b' \ or q_subkind == 'ax² + b' \ or q_subkind == 'ax² + bx': # __ # the idea is to build the final factorized result first and to # expand it to get the question (and the solution's steps # in the same time) if q_subkind == 'default': common_factor = Monomial((RANDOMLY, 6, 1)) # In order to reduce the number of cases where x² appears, # let the common factor be of degree 0 most of the time. common_factor.set_degree( randomly.integer(0, 1, weighted_table=[0.85, 0.15])) elif q_subkind in ['three_terms', 'ax + b', 'ax² + b']: common_factor = Monomial((RANDOMLY, 6, 0)) elif q_subkind == 'ax² + bx': common_factor = Monomial((RANDOMLY, 6, 1)) common_factor.set_degree(1) # to avoid having a situation like 1×(2x + 3) which isn't # factorizable: if common_factor.get_degree() == 0: common_factor.set_coeff(randomly.integer(2, 6)) # signs are randomly chosen ; the only case that is to be avoided # is all signs are negative (then it wouldn't factorize well... # I mean then the '-' should be factorized and not left in the final # result) signs_box = [['+', '+'], ['+', '-']] signs = randomly.pop(signs_box) # this next test is to avoid -2x + 6 being factorized -2(x - 3) # which is not wrong but not "natural" to pupils # this test should be changed when a third term is being used. if signs == ['+', '-']: common_factor.set_sign('+') coeff_1 = randomly.integer(2, 10) coeff_2 = randomly.coprime_to(coeff_1, [i + 1 for i in range(10)]) coeff_3 = None if q_subkind == 'three_terms': coeff_3 = randomly.coprime_to(coeff_1 * coeff_2, [i + 1 for i in range(9)]) third_sign = randomly.sign() if third_sign == '-': common_factor.set_sign('+') signs.append(third_sign) lil_box = [] lil_box.append(Monomial(('+', 1, 0))) if q_subkind == 'ax² + b': lil_box.append(Monomial(('+', 1, 2))) else: lil_box.append(Monomial(('+', 1, 1))) if ((common_factor.get_degree() == 0 and randomly.integer(1, 20) > 17 and q_subkind == 'default') or q_subkind == 'three_terms'): # __ lil_box.append(Monomial(('+', 1, 2))) first_term = randomly.pop(lil_box) second_term = randomly.pop(lil_box) third_term = None first_term.set_coeff(coeff_1) first_term.set_sign(randomly.pop(signs)) second_term.set_coeff(coeff_2) second_term.set_sign(randomly.pop(signs)) if q_subkind == 'three_terms': third_term = randomly.pop(lil_box) third_term.set_coeff(coeff_3) third_term.set_sign(randomly.pop(signs)) if first_term.is_positive() and second_term.is_positive()\ and third_term.is_positive(): # __ common_factor.set_sign(randomly.sign()) if not (q_subkind == 'three_terms'): if common_factor.get_degree() == 0 \ and first_term.get_degree() >= 1 \ and second_term.get_degree() >= 1: # __ if randomly.heads_or_tails(): first_term.set_degree(0) else: second_term.set_degree(0) if q_subkind == 'three_terms': solution = Expandable( (common_factor, Sum([first_term, second_term, third_term]))) else: solution = Expandable( (common_factor, Sum([first_term, second_term]))) # now create the expanded step and the reduced step (which will # be given as a question) temp_steps = [] current_step = solution.clone() while current_step is not None: temp_steps.append(current_step) current_step = current_step.expand_and_reduce_next_step() # now we put the steps in the right order steps = [] for i in range(len(temp_steps)): steps.append(temp_steps[len(temp_steps) - 1 - i]) return steps elif q_subkind == 'not_factorizable': signs_box = [['+', '+'], ['+', '-']] signs = randomly.pop(signs_box) coeff_1 = randomly.integer(2, 10) coeff_2 = randomly.coprime_to(coeff_1, [i + 1 for i in range(10)]) lil_box = [] lil_box.append(Monomial(('+', 1, 0))) lil_box.append(Monomial(('+', 1, 1))) lil_box.append(Monomial(('+', 1, 2))) first_term = randomly.pop(lil_box) second_term = randomly.pop(lil_box) first_term.set_coeff(coeff_1) first_term.set_sign(randomly.pop(signs)) second_term.set_coeff(coeff_2) second_term.set_sign(randomly.pop(signs)) if first_term.get_degree() >= 1 \ and second_term.get_degree() >= 1: # __ if randomly.heads_or_tails(): first_term.set_degree(0) else: second_term.set_degree(0) steps = [] solution = _("So far, we don't know if this expression can be " "factorized.") steps.append(Sum([first_term, second_term])) steps.append(solution) return steps
def __init__(self, q_kind='default_nothing', **options): self.derived = True # The call to the mother class __init__() method will set the # fields matching optional arguments which are so far: # self.q_kind, self.q_subkind # plus self.options (modified) Q_Structure.__init__(self, q_kind, AVAILABLE_Q_KIND_VALUES, **options) # The purpose of this next line is to get the possibly modified # value of **options options = self.options # Set the default values of the different options use_pythagorean_triples = False if (('use_pythagorean_triples' in options and options['use_pythagorean_triples']) or (self.q_kind == 'converse_of_pythagorean_theorem')): # __ use_pythagorean_triples = True use_decimals = True if 'use_decimals' in options and not options['use_decimals']: use_decimals = False self.round_to = "" if 'round_to' in options and options['round_to'] in PRECISION: self.round_to = options['round_to'] if not use_pythagorean_triples: if self.round_to == "": if use_decimals: self.round_to = HUNDREDTH else: self.round_to = TENTH self.use_pythagorean_triples = use_pythagorean_triples self.figure_in_the_text = True if ('figure_in_the_text' in options and not options['figure_in_the_text']): # __ self.figure_in_the_text = False rotation_option = 'no' if 'rotate_around_barycenter' in options: rotation_option = options['rotate_around_barycenter'] self.final_unit = "" if ('final_unit' in options and options['final_unit'] in LENGTH_UNITS): # __ self.final_unit = options['final_unit'] sides_units = [self.final_unit, self.final_unit, self.final_unit] # Later, allow to use a different length unit for the sides # than the final expected unit ; allow different units for different # sides (for instance giving a list in option 'sides_units')... # So far we will do with only ONE unit # if 'sides_units' in options \ # and options['sides_units'] in LENGTH_UNITS: # # __ # sides_units = options['sides_units'] self.right_triangle = None self.unknown_side = None self.known_sides = [] # Now set some randomly values letters = [elt for elt in alphabet.UPPERCASE] vertices_names = (randomly.pop(letters), randomly.pop(letters), randomly.pop(letters)) # Here you can begin to write code for the different # q_kinds & q_subkinds if self.q_kind == 'pythagorean_theorem': sides_values = [None, None, None] if use_pythagorean_triples: triples = pythagorean.ALL_TRIPLES_5_100 if use_decimals: triples = pythagorean.ALL_TRIPLES_5_100 \ + pythagorean.TRIPLES_101_200_WO_TEN_MULTIPLES sides_values = randomly.pop(triples) if use_decimals: sides_values = \ [Decimal(str(Decimal(sides_values[0]) / 10)), Decimal(str(Decimal(sides_values[1]) / 10)), Decimal(str(Decimal(sides_values[2]) / 10))] if self.q_subkind == 'calculate_hypotenuse': sides_values[2] = "" sides_units[2] = "" else: # case: self.q_subkind == 'calculate_one_leg' leg0_or_1 = randomly.pop([0, 1]) sides_values[leg0_or_1] = "" sides_units[leg0_or_1] = "" else: # NO pythagorean triples. # The two generated values must NOT match any pythagorean # triple if use_decimals: min_side_value = 5 max_side_value = 200 else: min_side_value = 5 max_side_value = 100 if self.q_subkind == 'calculate_hypotenuse': first_leg = randomly.integer(min_side_value, max_side_value) # we will take the leg values between # at least 25% and at most 150% of the length of first leg # (and smaller than max_side_value) second_leg_values = [] for i in range(int(first_leg * 1.5)): if (i + int(first_leg * 0.25) <= 1.5 * first_leg and i + int(first_leg * 0.25) <= max_side_value): # __ second_leg_values += [i + int(first_leg * 0.25)] second_leg_unauthorized_values = \ pythagorean.get_legs_matching_given_leg(first_leg) second_leg_possible_values = \ list(set(second_leg_values) - set(second_leg_unauthorized_values)) if randomly.heads_or_tails(): sides_values = \ [first_leg, randomly.pop(second_leg_possible_values), ""] sides_units[2] = "" else: sides_values = \ [randomly.pop(second_leg_possible_values), first_leg, ""] sides_units[2] = "" else: # case: self.q_subkind == 'calculate_one_leg' hypotenuse = randomly.integer(min_side_value, max_side_value) # we will take the leg values between # at least 25% and at most 90% of the length of hypotenuse # to avoid "weird" cases (with a very subtle difference # between the given values and the one to calculate) leg_values = [] for i in range(int(hypotenuse * 0.9)): if i + int(hypotenuse * 0.25) <= 0.9 * hypotenuse: leg_values += [i + int(hypotenuse * 0.25)] leg_unauthorized_values = \ pythagorean\ .get_legs_matching_given_hypotenuse(hypotenuse) leg_possible_values = list(set(leg_values) - set(leg_unauthorized_values)) if randomly.heads_or_tails(): sides_values = ["", randomly.pop(leg_possible_values), hypotenuse] sides_units[0] = "" else: sides_values = [randomly.pop(leg_possible_values), "", hypotenuse] sides_units[1] = "" self.right_triangle = \ RightTriangle((vertices_names, 'sketch'), rotate_around_isobarycenter=rotation_option) self.right_triangle.leg[0].label = Value(sides_values[0], unit=sides_units[0]) self.right_triangle.leg[1].label = Value(sides_values[1], unit=sides_units[1]) self.right_triangle.hypotenuse.label = Value(sides_values[2], unit=sides_units[2]) for side in self.right_triangle.side: if side.label.raw_value == "": self.unknown_side = side.clone() else: self.known_sides += [side.clone()] elif self.q_kind in ['converse_of_pythagorean_theorem', 'contrapositive_of_pythagorean_theorem']: # __ sides_values = [None, None, None] triples = list(pythagorean.ALL_TRIPLES_5_100) if use_decimals: triples += list(pythagorean.TRIPLES_101_200_WO_TEN_MULTIPLES) sides_values = randomly.pop(triples) if self.q_kind == 'contrapositive_of_pythagorean_theorem': # We'll change exactly one value to be sure the triplet # is NOT pythagorean if randomly.heads_or_tails(): # We will decrease the lowest value max_delta = int(0.1 * sides_values[0]) min_delta = 1 if min_delta > max_delta: max_delta = min_delta chosen_delta = randomly.pop( [i + min_delta for i in range(max_delta - min_delta + 1)]) sides_values = [sides_values[0] - chosen_delta, sides_values[1], sides_values[2]] else: # We will increase the highest value max_delta = int(0.1 * sides_values[2]) min_delta = 1 if min_delta > max_delta: max_delta = min_delta chosen_delta = randomly.pop( [i + min_delta for i in range(max_delta - min_delta + 1)]) sides_values = [sides_values[0], sides_values[1], sides_values[2] + chosen_delta] if use_decimals: sides_values = [Decimal(str(Decimal(sides_values[0]) / 10)), Decimal(str(Decimal(sides_values[1]) / 10)), Decimal(str(Decimal(sides_values[2]) / 10))] self.right_triangle = \ RightTriangle((vertices_names, 'sketch'), rotate_around_isobarycenter=rotation_option) self.right_triangle.leg[0].label = Value(sides_values[0], unit=sides_units[0]) self.right_triangle.leg[1].label = Value(sides_values[1], unit=sides_units[1]) self.right_triangle.hypotenuse.label = Value(sides_values[2], unit=sides_units[2]) self.right_triangle.right_angle.mark = ""
def __init__(self, x_kind='default_nothing', **options): self.derived = True X_Structure.__init__(self, x_kind, AVAILABLE_X_KIND_VALUES, X_LAYOUTS, X_LAYOUT_UNIT, **options) # The purpose of this next line is to get the possibly modified # value of **options options = self.options # BEGINING OF THE ZONE TO REWRITE ------------------------------------- default_question = question.Q_Factorization # TEXTS OF THE EXERCISE self.text = {'exc': _("Factorise: "), 'ans': ""} # alternate texts section if self.x_kind == 'level_02_easy' \ or self.x_kind == 'level_02_intermediate': self.text = {'exc': _("Factorise:"), 'ans': ""} elif (self.x_kind == 'level_03_some_not_factorizable' or (self.x_kind, self.x_subkind) == ('mini_test', 'two_factorizations')): # __ self.text = {'exc': _("Factorise, if possible:"), 'ans': ""} # SHORT TEST & OTHER PREFORMATTED EXERCISES if self.x_kind == 'short_test': if self.x_subkind == 'easy_level': # NOTE: the algebra (easy) short test uses directly one # question and passes its arguments (x_kind...) directly # to question.Factorization() (see below, at the end) pass elif self.x_subkind == 'medium_level': lil_box = [] lil_box.append( default_question(q_kind='level_01', q_subkind='ax² + bx', expression_number=0)) if randomly.heads_or_tails(): lil_box.append( default_question(q_kind='level_01', q_subkind='ax² + b', expression_number=0)) else: lil_box.append( default_question(q_kind='level_01', q_subkind='ax + b', expression_number=0)) lil_box.append( default_question(q_kind='level_01', q_subkind='not_factorizable', expression_number=0)) for i in range(len(lil_box)): q = randomly.pop(lil_box) q.expression.name = alphabet.UPPERCASE[i] for expression in q.steps: expression.name = alphabet.UPPERCASE[i] self.questions_list.append(q) elif self.x_subkind == 'hard_level': lil_box = [] l03_kinds = [ 'sum_square_mixed', 'difference_square_mixed', randomly.pop( ['squares_difference', 'squares_difference_mixed']), randomly.pop([ 'fake_01', 'fake_01_mixed', 'fake_02', 'fake_02_mixed', 'fake_03', 'fake_03_mixed' ]), 'fake_04_any_mixed' ] for n in range(len(l03_kinds)): lil_box.append( default_question(q_kind='level_03', q_subkind=l03_kinds[n], expression_number=n + 1)) l02_kinds = [('type_2_A1', False), ('type_2_A0', True), ('type_4_A0', False)] for n in range(len(l02_kinds)): lil_box.append( default_question(q_kind='level_02', q_subkind=l02_kinds[n][0], max_coeff=10, minus_sign=l02_kinds[n][1], expression_number=n + len(l03_kinds) + 1)) for i in range(len(lil_box)): q = randomly.pop(lil_box) q.expression.name = alphabet.UPPERCASE[i] for expression in q.steps: if isinstance(expression, Expression): expression.name = alphabet.UPPERCASE[i] self.questions_list.append(q) elif self.x_kind == 'mini_test': if self.x_subkind == 'two_factorizations': lil_box = [] lil_box.append( default_question(q_kind='level_03', q_subkind=randomly.pop( ['any_fake', 'any_true'], weighted_table=[0.2, 0.8]), expression_number=1)) l02_kinds = [('type_2_A1', False), ('type_2_A0', True), ('type_4_A0', False)] n = randomly.pop([0, 1, 2]) lil_box.append( default_question(q_kind='level_02', q_subkind=l02_kinds[n][0], max_coeff=10, minus_sign=l02_kinds[n][1], expression_number=2)) for i in range(len(lil_box)): q = randomly.pop(lil_box) q.expression.name = \ alphabet.UPPERCASE[i + self.start_number] for expression in q.steps: if isinstance(expression, Expression): expression.name = \ alphabet.UPPERCASE[i + self.start_number] self.questions_list.append(q) elif self.x_kind == 'preformatted': if self.x_subkind == 'level_01_easy': # n is the number of questions still left to do n = 10 lil_box = [] lil_box.append( default_question(q_kind='level_01', q_subkind='ax² + bx', expression_number=10 - n)) n -= 1 if randomly.heads_or_tails(): lil_box.append( default_question(q_kind='level_01', q_subkind='ax² + bx', expression_number=10 - n)) n -= 1 lil_box.append( default_question(q_kind='level_01', q_subkind='ax² + b', expression_number=10 - n)) n -= 1 if randomly.heads_or_tails(): lil_box.append( default_question(q_kind='level_01', q_subkind='ax² + b', expression_number=10 - n)) n -= 1 if randomly.heads_or_tails(): lil_box.append( default_question(q_kind='level_01', q_subkind='ax² + b', expression_number=10 - n)) n -= 1 for i in range(n): lil_box.append( default_question(q_kind='level_01', q_subkind='ax + b', expression_number=n - i)) for i in range(len(lil_box)): q = randomly.pop(lil_box) q.expression.name = alphabet.UPPERCASE[i] for expression in q.steps: expression.name = alphabet.UPPERCASE[i] self.questions_list.append(q) elif self.x_subkind == 'level_02_easy': subkinds = ['type_1_A0', 'type_1_D0', 'type_1_G0'] n1 = len(subkinds) for i in range(n1): self.questions_list.append( default_question(q_kind='level_02', q_subkind=randomly.pop(subkinds), minus_sign=False, expression_number=i)) subkinds = ['type_2_A0', 'type_2_D0'] n2 = len(subkinds) for i in range(n2): self.questions_list.append( default_question(q_kind='level_02', q_subkind=randomly.pop(subkinds), minus_sign=False, expression_number=i + n1)) elif self.x_subkind == 'level_02_intermediate': subkinds = ['type_1_D', 'type_1_G0', 'type_1_1'] n1 = len(subkinds) for i in range(n1): self.questions_list.append( default_question(q_kind='level_02', q_subkind=randomly.pop(subkinds), minus_sign=False, expression_number=i)) subkinds = randomly.pop([['type_2_A0', 'type_2_D1'], ['type_2_A1', 'type_2_D0']]) n2 = len(subkinds) for i in range(n2): self.questions_list.append( default_question(q_kind='level_02', q_subkind=randomly.pop(subkinds), minus_sign=False, expression_number=i + n1)) elif self.x_subkind == 'level_03_sum_squares': lil_box = [] for n in range(2): lil_box.append( default_question(q_kind='level_03', q_subkind='sum_square', expression_number=n + 1)) lil_box.append( default_question(q_kind='level_03', q_subkind='sum_square_mixed', expression_number=n + 1)) for i in range(len(lil_box)): q = lil_box[i] q.expression.name = alphabet.UPPERCASE[i] for expression in q.steps: if isinstance(expression, Expression): expression.name = alphabet.UPPERCASE[i] self.questions_list.append(q) elif self.x_subkind == 'level_03_difference_squares': lil_box = [] for n in range(2): lil_box.append( default_question(q_kind='level_03', q_subkind='difference_square', expression_number=n + 1)) lil_box.append( default_question(q_kind='level_03', subkind='difference_square' '_mixed', expression_number=n + 1)) for i in range(len(lil_box)): q = lil_box[i] q.expression.name = alphabet.UPPERCASE[i] for expression in q.steps: if isinstance(expression, Expression): expression.name = alphabet.UPPERCASE[i] self.questions_list.append(q) elif self.x_subkind == 'level_03_squares_differences': lil_box = [] for n in range(2): lil_box.append( default_question(q_kind='level_03', q_subkind='squares_difference', expression_number=n + 1)) lil_box.append( default_question(q_kind='level_03', q_subkind='squares_difference_mixed', expression_number=n + 1)) for i in range(len(lil_box)): q = lil_box[i] q.expression.name = alphabet.UPPERCASE[i] for expression in q.steps: if isinstance(expression, Expression): expression.name = alphabet.UPPERCASE[i] self.questions_list.append(q) elif self.x_subkind == 'level_03_some_not_factorizable': lil_box = [] q1 = default_question(q_kind='level_03', q_subkind='any_true_mixed', expression_number=1) q2 = default_question(q_kind='level_03', q_subkind='any_fake_straight', expression_number=2) q1q2 = [q1, q2] lil_box.append(randomly.pop(q1q2)) lil_box.append(randomly.pop(q1q2)) for n in range(3): lil_box.append( default_question(q_kind='level_03', q_subkind='any_true', expression_number=n + 3)) for n in range(2): lil_box.append( default_question(q_kind='level_03', q_subkind='any_fake', expression_number=n + 5)) for n in range(2): lil_box.append( default_question(q_kind='level_03', q_subkind='any', expression_number=n + 7)) for i in range(len(lil_box)): q = lil_box[i] q.expression.name = alphabet.UPPERCASE[i] for expression in q.steps: if isinstance(expression, Expression): expression.name = alphabet.UPPERCASE[i] self.questions_list.append(q) elif self.x_subkind == 'level_03_all_kinds': all_kinds = [ 'sum_square', 'sum_square_mixed', 'difference_square', 'difference_square_mixed', 'squares_difference', 'squares_difference_mixed', 'fake_01', 'fake_01_mixed', 'fake_02', 'fake_02_mixed', 'fake_03', 'fake_03_mixed', 'fake_04_A', 'fake_04_A_mixed', 'fake_04_B', 'fake_04_B_mixed', 'fake_04_C', 'fake_04_C_mixed', 'fake_04_D', 'fake_04_D_mixed' ] lil_box = [] for n in range(len(all_kinds)): lil_box.append( default_question(q_kind='level_03', q_subkind=all_kinds[n], expression_number=n + 1)) for i in range(len(lil_box)): q = lil_box[i] q.expression.name = alphabet.UPPERCASE[i] for expression in q.steps: if isinstance(expression, Expression): expression.name = alphabet.UPPERCASE[i] self.questions_list.append(q) # OTHER EXERCISES (BY_PASS OPTION) else: for i in range(self.q_nb): self.questions_list.append( default_question(expression_number=i + self.start_number, q_kind=self.x_subkind, **options))