Пример #1
0
  def build_tree(self):

    tree = KDTree(self.nmax)
    vnum = 0

    for i,v in enumerate(self.obj.data.vertices):
      tree.insert(v.co,i)
      vnum += 1

    tree.balance()

    self.tree = tree
    self.vnum = vnum
    return
Пример #2
0
def make_blobs(context, gridob, groundob, samples2D, display_radius):
    blob_group_clear(context)
    blobs = []
    
    imat = groundob.matrix_world.inverted()

    blobtree = KDTree(len(gridob.data.vertices))
    for i, v in enumerate(gridob.data.vertices):
        co = gridob.matrix_world * v.co
        # note: only using 2D coordinates, otherwise weights get distorted by z offset
        blobtree.insert((co[0], co[1], 0.0), i)
    blobtree.balance()
    
    for v in gridob.data.vertices:
        co = gridob.matrix_world * v.co
        ok, loc, nor, poly_index = project_on_ground(groundob, co)
        blobs.append(Blob(loc, nor, poly_index) if ok else None)
    
    with progress.ProgressContext("Grouping Samples", 0, len(samples2D)):
        mpolys = groundob.data.polygons
        mverts = groundob.data.vertices
        for xy in samples2D:
            progress.progress_add(1)

            # note: use only 2D coordinates for weighting, z component should be 0
            index = assign_blob(blobtree, (xy[0], xy[1], 0.0), nor)
            if index < 0:
                continue
            blob = blobs[index]
            if blob is None:
                continue
            
            # project samples onto the ground object
            ok, sloc, snor, spoly = project_on_ground(groundob, xy[0:2]+(0,))
            if not ok:
                continue
            
            # calculate barycentric vertex weights on the poly
            poly = mpolys[spoly]
            sverts = list(poly.vertices)
            # note: coordinate space has to be consistent, use sloc in object space
            sweights = poly_3d_calc(tuple(mverts[i].co for i in sverts), imat * sloc)

            blob.add_sample(sloc, snor, spoly, sverts, sweights)
    
    blobs_to_customprops(groundob.meadow, blobs)

    make_blob_visualizer(context, groundob, blobs, display_radius, hide=True)
Пример #3
0
    def __init__(self, guide, ground, scale):
        
        self.GUIDE_STRENGTH = 1.0 * scale

        self.TURBULENCE_FREQUENCY = 10 * scale
        self.TURBULENCE_STRENGTH = 1.0 * scale

        self.AVOID_THRESHOLD = 0.01 * scale
        self.AVOID_STRENGTH = 0.2 * scale
        
        self.frame = 0
        
        self.particles = []
        self.guide = guide
#        self.vertex_distance = (self.guide.data.vertices[0].co - self.guide.data.vertices[1].co).length_squared
        
        self.guide_tree = KDTree(len(self.guide.data.vertices))
        for v in self.guide.data.vertices:
            self.guide_tree.insert(v.co, v.index)
        self.guide_tree.balance()
        
        self.ground = ground
        self.scale = scale
        
#        bpy.ops.mesh.primitive_ico_sphere_add(location=(0,0,0), size=0.01)
#        self.instance_obj = bpy.context.object
#        self.instance_obj = bpy.data.objects['Fleche']
        self.instance_obj = bpy.data.objects[bpy.context.scene.ant_instance]
        self.instance_mesh = self.instance_obj.data
Пример #4
0
    def __build_src_kd(self):
        mesh = self.decimated.data
        size = len(mesh.vertices)
        self.src_kd = KDTree(size)

        for i, v in enumerate(mesh.vertices):
            self.src_kd.insert(v.co, i)
        self.src_kd.balance()
Пример #5
0
  def build_tree(self):

    tree = KDTree(self.nmax)
    vnum = 0

    for i,v in enumerate(self.obj.data.vertices):
      tree.insert(v.co,i)
      vnum += 1

    #co,index,dist = kd.find(co)
    #co,index,dist = kd.find(co,10)
    #co, index, dist = kd.find_range(co,0.5)

    tree.balance()

    self.tree = tree
    self.vnum = vnum
    return
Пример #6
0
def connect_verts(bm, z_idx, v1, verts2_bm, connections, max_rho):
    tree = KDTree(len(verts2_bm))
    for i, v2 in enumerate(verts2_bm):
        tree.insert(v2.co, i)
    tree.balance()

    for co, i, dist in tree.find_n(v1.co, connections):
        if dist <= max_rho:
            v2 = verts2_bm[i]
            if bm.edges.get((v1, v2)) is None:
                bm.edges.new((v1, v2))
                bm.edges.ensure_lookup_table()
Пример #7
0
    def _init(self):
        self._faces_by_vertex = defaultdict(set)
        self._faces_by_edge = defaultdict(set)
        self._edges_by_vertex = defaultdict(set)

        for face in self.solid.Faces:
            for vertex in face.Vertexes:
                self._faces_by_vertex[SvSolidTopology.Item(vertex)].add(
                    SvSolidTopology.Item(face))
            for edge in face.Edges:
                self._faces_by_edge[SvSolidTopology.Item(edge)].add(
                    SvSolidTopology.Item(face))

        for edge in self.solid.Edges:
            for vertex in edge.Vertexes:
                self._edges_by_vertex[SvSolidTopology.Item(vertex)].add(
                    SvSolidTopology.Item(edge))

        self._tree = KDTree(len(self.solid.Vertexes))
        for i, vertex in enumerate(self.solid.Vertexes):
            co = (vertex.X, vertex.Y, vertex.Z)
            self._tree.insert(co, i)
        self._tree.balance()
Пример #8
0
 def gen(seed, num):
     random.seed(seed)
     
     data = []
     tree = KDTree(0)
     tree.balance()
     for i in range(num):
         best = best_candidate(num_candidates, tree)
         if not best:
             break
         yield best
         
         data.append((best[0], best[1], 0.0))
         tree = KDTree(len(data))
         for i, p in enumerate(data):
             tree.insert(p, i)
         tree.balance()
Пример #9
0
class Tile3DFinder:
    def __init__(self, objects=None):
        self.cached = {}
        self.objects = objects or [
            c for c in t3d.root.children if c.layers[t3d.layer]
        ]
        size = len(self.objects)
        self.kd = KDTree(size)

        for i, obj in enumerate(self.objects):
            self.kd.insert(obj.pos, i)
        self.kd.balance()

    def get_tiles_at(self, pos):
        vec = pos.copy().freeze()
        if vec in self.cached:
            return self.cached[vec]
        else:
            objs = [
                self.objects[index]
                for pos, index, dist in self.kd.find_range(pos, TOLERANCE)
            ]
            self.cached[vec] = objs
            return objs
Пример #10
0
def build_kdtree_from_verts(verts):
    # Create a kd-tree from verts
    size = len(verts)
    kd = KDTree(size)
    for i, vtx in enumerate(verts):
        # exclude hidden geometry
        if not vtx.hide:
            kd.insert(vtx.co, i)
    kd.balance()
    return kd
Пример #11
0
    def set_gt_points(cls, gt_points: List[Vector] = None) -> None:
        """Set the ground truth point cloud. Automatically creates the KDTree to speed up point cloud operations.

        Keyword Arguments:
            gt_points {List[Vector]} -- ground truth point cloud. If {None} both the point cloud
                                        and the KDTree are cleared. (default: {None})
        """
        cls.unload_deleted()
        #
        cls.gt_points = gt_points
        if gt_points is not None:
            # build KDTree for target point cloud to speed up the nearest neighbor search
            cls.gt_kdtree = KDTree(len(gt_points))
            for i, v in enumerate(gt_points):
                cls.gt_kdtree.insert(v, i)
            cls.gt_kdtree.balance()
Пример #12
0
 def step(
     self,
     speed,
 ):
     new_tree = KDTree(len(self.particles))
     self.draw_obj.commands.clear()
     for id, particle in enumerate(self.particles):
         particle.step(speed)
         particle.draw()
         new_tree.insert(particle.location, id)
     new_tree.balance()
     self.kd_tree = new_tree
Пример #13
0
    def _execute(self, context):
        ob = context.object
        verts = ob.data.vertices
        kd = KDTree(len(verts))

        for i, v in enumerate(verts):
            kd.insert(ob.matrix_world @ v.co, i)
        kd.balance()

        for o in context.selected_objects:
            if ob is o or o.type != 'MESH':
                continue
            for v in o.data.vertices:
                nearest = kd.find_range(o.matrix_world @ v.co, self.dist)
                for _, idx, _ in nearest:
                    verts[idx].select = True
Пример #14
0
class ParticleManager:
    _particle_types = {}

    @classmethod
    def register_particle_type(cls, type, name):
        cls._particle_types[name] = type

    @classmethod
    def unregister_particle_type(cls, name):
        del cls._particle_types[name]

    def __init__(self, context):
        self.obj = context.active_object
        self.particles = []
        self.edges = []
        self.draw_layer = grease_draw.StrokeLayer(context)
        self.kd_tree = None

    def create_particle(self, type, location, radius=0.03):
        if type in self._particle_types:
            p = self._particle_types[type](radius, location, self)
            self.particles.append(p)
            return p
        else:
            raise KeyError("No such particle registered: %s" % type)

    def build_kd_tree(self):
        self.kd_tree = KDTree(len(self.particles))
        for index, particle in enumerate(self.particles):
            self.kd_tree.insert(particle.location, index)
        self.kd_tree.balance()

    def nearest_n_particles(self, location, n):
        for location, index, distance in self.kd_tree.find_n(location, n):
            particle = self.particles[index]
            yield particle, distance

    def nearest_n_tag_particles(self, location, n, tag):
        def tag_filter(i):
            return self.particles[i].tag is tag

        for location, index, distance in self.kd_tree.find_n(
                location, n, filter=tag_filter):
            particle = self.particles[index]
            yield particle, distance

    def step(self, speed):
        for particle in self.particles:
            particle.step(speed)

    def sample_obj(self, location):
        return self.obj.closest_point_on_mesh(location)
Пример #15
0
    def init():
        nonlocal tree, total_faces, deleted_faces, face_index
        bm.faces.ensure_lookup_table()
        # tree = BVHTree.FromObject(ob, context.scene)
        # tree = BVHTree.FromBMesh(bm, epsilon=0.00001)
        tree = KDTree(len(bm.faces))
        for i, face in enumerate(bm.faces):
            tree.insert(face.calc_center_median(), i)
        tree.balance()

        total_faces = len(bm.faces)
        deleted_faces = [False] * total_faces
        face_index = 0
Пример #16
0
def my_handler(scene):
    from_name = 'tire'
    to_name = 'tire.001'
    tgt_name = 'tire.002'
    brush_name = 'Cube'

    from_obj = scene.objects[from_name]
    to_obj = scene.objects[to_name]
    tgt_obj = scene.objects[tgt_name]
    brush_obj = scene.objects[brush_name]

    from_mesh = from_obj.data
    to_mesh = to_obj.data
    tgt_mesh = tgt_obj.data
    brush_mesh = brush_obj.data

    tgt_kd = KDTree(len(tgt_mesh.vertices))
    for i in range(len(tgt_mesh.vertices)):
        co = tgt_obj.matrix_world * tgt_mesh.vertices[i].co
        tgt_kd.insert(co, i)
    tgt_kd.balance()
    # return tgt_kd

    min_x = float('inf')
    max_x = float('-inf')  # brush_mesh.vertices[0].co.x
    for i in range(len(brush_mesh.vertices)):
        co = brush_mesh.vertices[i].co * brush_obj.matrix_world
        max_x = max(co.x, max_x)
        min_x = min(co.x, min_x)
    radius = (max_x - min_x) / 2
    # raise ValueError('min_x: %f, max_x: %f, radius: %f' % (min_x, max_x, radius))

    pts = tgt_kd.find_range(brush_obj.location, radius)
    # raise ValueError('len(pts): %d' % len(pts))
    for (co, idx, dist) in pts:
        tgt_obj.vertex_groups[0].add([idx], 1.0, 'REPLACE')

    for i in range(len(from_mesh.vertices)):
        t = tgt_obj.vertex_groups[0].weight(i)
        co = from_mesh.vertices[i].co * (1 - t) + \
            to_mesh.vertices[i].co * (t)
        no = from_mesh.vertices[i].normal * (1 - t) + \
            to_mesh.vertices[i].normal * (t)
        tgt_mesh.vertices[i].co = co
        tgt_mesh.vertices[i].normal = no
    scene.update()
Пример #17
0
def make_blobs(context, gridob, groundob, samples2D, display_radius):
    blob_group_clear(context)
    blobs = []

    imat = groundob.matrix_world.inverted()

    blobtree = KDTree(len(gridob.data.vertices))
    for i, v in enumerate(gridob.data.vertices):
        co = gridob.matrix_world * v.co
        # note: only using 2D coordinates, otherwise weights get distorted by z offset
        blobtree.insert((co[0], co[1], 0.0), i)
    blobtree.balance()

    for v in gridob.data.vertices:
        co = gridob.matrix_world * v.co
        ok, loc, nor, poly_index = project_on_ground(groundob, co)
        blobs.append(Blob(loc, nor, poly_index) if ok else None)

    with progress.ProgressContext("Grouping Samples", 0, len(samples2D)):
        mpolys = groundob.data.polygons
        mverts = groundob.data.vertices
        for xy in samples2D:
            progress.progress_add(1)

            # note: use only 2D coordinates for weighting, z component should be 0
            index = assign_blob(blobtree, (xy[0], xy[1], 0.0), nor)
            if index < 0:
                continue
            blob = blobs[index]
            if blob is None:
                continue

            # project samples onto the ground object
            ok, sloc, snor, spoly = project_on_ground(groundob,
                                                      xy[0:2] + (0, ))
            if not ok:
                continue

            # calculate barycentric vertex weights on the poly
            poly = mpolys[spoly]
            sverts = list(poly.vertices)
            # note: coordinate space has to be consistent, use sloc in object space
            sweights = poly_3d_calc(tuple(mverts[i].co for i in sverts),
                                    imat * sloc)

            blob.add_sample(sloc, snor, spoly, sverts, sweights)

    blobs_to_customprops(groundob.meadow, blobs)

    make_blob_visualizer(context, groundob, blobs, display_radius, hide=True)
Пример #18
0
def unique_points(points, eps=1e-4):
    kdt = KDTree(len(points))
    for i, p in enumerate(points):
        kdt.insert(p, i)
    kdt.balance()
    unique = []
    repeating = []
    mask = []
    for p in points:
        found = kdt.find_n(p, 2)
        if len(found) > 1:
            loc, idx, distance = found[1]
            ok = distance > eps
            mask.append(ok)
            if ok:
                unique.append(p)
            else:
                repeating.append(p)
    return mask, unique, repeating
Пример #19
0
    def init_guess(curve, points_from, samples=50):
        u_min, u_max = curve.get_u_bounds()
        us = np.linspace(u_min, u_max, num=samples)

        points = curve.evaluate_array(us).tolist()
        #print("P:", points)

        kdt = KDTree(len(us))
        for i, v in enumerate(points):
            kdt.insert(v, i)
        kdt.balance()

        us_out = []
        nearest_out = []
        for point_from in points_from:
            nearest, i, distance = kdt.find(point_from)
            us_out.append(us[i])
            nearest_out.append(tuple(nearest))

        return us_out, nearest_out
Пример #20
0
def my_handler(scene):
    from_name='tire'
    to_name='tire.001'
    tgt_name='tire.002'
    brush_name = 'Cube'
        
    from_obj=scene.objects[from_name]
    to_obj=scene.objects[to_name]
    tgt_obj=scene.objects[tgt_name]
    brush_obj=scene.objects[brush_name]
    
    from_mesh=from_obj.data
    to_mesh=to_obj.data
    tgt_mesh=tgt_obj.data
    brush_mesh=brush_obj.data
    
    tgt_kd = KDTree(len(tgt_mesh.vertices))
    for i in range(len(tgt_mesh.vertices)):
        co = tgt_obj.matrix_world * tgt_mesh.vertices[i].co
        tgt_kd.insert(co, i)
    tgt_kd.balance()
    # return tgt_kd
    
    min_x = float('inf')
    max_x = float('-inf') # brush_mesh.vertices[0].co.x
    for i in range(len(brush_mesh.vertices)):
        co = brush_mesh.vertices[i].co * brush_obj.matrix_world
        max_x = max(co.x, max_x)
        min_x = min(co.x, min_x)
    radius = (max_x - min_x) / 2
    # raise ValueError('min_x: %f, max_x: %f, radius: %f' % (min_x, max_x, radius))
    
    pts = tgt_kd.find_range(brush_obj.location, radius)
    # raise ValueError('len(pts): %d' % len(pts))
    for (co, idx, dist) in pts:
        tgt_obj.vertex_groups[0].add([idx], 1.0, 'REPLACE')
            
    for i in range(len(from_mesh.vertices)):    
        t = tgt_obj.vertex_groups[0].weight(i)
        co = from_mesh.vertices[i].co * (1 - t) + \
            to_mesh.vertices[i].co * (t)
        no = from_mesh.vertices[i].normal * (1 - t) + \
            to_mesh.vertices[i].normal * (t)
        tgt_mesh.vertices[i].co = co
        tgt_mesh.vertices[i].normal = no
    scene.update()
Пример #21
0
 def to_point(self, amplitude, coefficient, vertex, centers, direction):
     vertex = Vector(vertex)
     n = len(centers)
     if self.point_mode == 'AVG' or n <= 1:
         vectors = []
         for center in centers:
             vector = Vector(center) - vertex
             vector = self.falloff(amplitude, coefficient,
                                   vector.length) * vector.normalized()
             vectors.append(vector)
         result = get_avg_vector(vectors)
         return result.length, result.normalized()
     else:
         kdt = KDTree(n)
         for i, center in enumerate(centers):
             kdt.insert(Vector(center), i)
         kdt.balance()
         nearest_co, nearest_idx, nearest_distance = kdt.find(vertex)
         vector = nearest_co - vertex
         coeff = self.falloff(amplitude, coefficient, nearest_distance)
         return coeff, vector.normalized()
Пример #22
0
    def invoke(self, context, event):
        self.ob = context.active_object.data
        self.bm = bmesh.new()
        self.bm.from_mesh(self.ob)
        self.bm.verts.ensure_lookup_table()

        links = []
        for vert in self.bm.verts:
            l = []
            links.append(l)
            for v in n_ring(vert, 100):
                l.append(v.index)

        immediate_edges = [len(vert.link_edges) for vert in self.bm.verts]

        bmesh.ops.triangulate(self.bm, faces=self.bm.faces)
        self.bm.verts.ensure_lookup_table()

        co = [tuple(v.co) for v in self.bm.verts]
        t = [tuple(v.index for v in f.verts) for f in self.bm.faces]

        kd = KDTree(len(self.bm.verts))
        for vert in self.bm.verts:
            kd.insert(vert.co, vert.index)
        kd.balance()

        x_mirr_table = [kd.find((vert.co[0] * -1, vert.co[1], vert.co[2]))[1] for vert in self.bm.verts]

        self.engine = softwrap_core.ShapeEngine(co, t, links, co, t, immediate_edges, x_mirr_table)
        self.engine.random_co()


        self.engine.add_pin(co=(10, 0, 0), vert_index=0, stiffness=50, twisty=False, x_mirr=True)

        context.window_manager.modal_handler_add(self)
        return {"RUNNING_MODAL"}
Пример #23
0
    def spread_step(self):
        count = 0
        new_particles = []
        self.draw_obj.commands.clear()

        for particle in self.particles:
            new_particles += particle.spread()
            count += len(new_particles)

        for particle in self.particles:
            if not particle.tag == "REMOVE":
                new_particles.append(particle)
        self.particles = new_particles

        new_tree = KDTree(len(self.particles))
        for id, particle in enumerate(self.particles):
            particle.draw()
            new_tree.insert(particle.location, id)
        new_tree.balance()
        self.kd_tree = new_tree

        return count
    def execute(self, vertices, clusters, connections, minDistance, maxDistance):
        minDistance = max(0, minDistance)
        maxDistance = max(minDistance, maxDistance)

        verticesAmount = len(vertices)
        kdTree = KDTree(verticesAmount)
        for i, vector in enumerate(vertices):
            kdTree.insert(vector, i)
        kdTree.balance()
        edges = []
        for searchIndex in range(min(verticesAmount, clusters)):
            added = 0
            for (vector, foundIndex, distance) in kdTree.find_range(vertices[searchIndex], maxDistance):
                if searchIndex != foundIndex and distance > minDistance:
                    if added >= connections: break
                    if foundIndex > searchIndex:
                        edge = (searchIndex, foundIndex)
                    else:
                        edge = (foundIndex, searchIndex)
                    edges.append(edge)
                    added += 1

        return list(set(edges))
Пример #25
0
 def getDefaultValue(cls):
     kdTree = KDTree(0)
     kdTree.balance()
     return kdTree
Пример #26
0
 def build_kdtree(self):
     tree = KDTree(len(self.particles))
     for id, p in enumerate(self.particles):
         tree.insert(p.location, id)
     tree.balance()
     self.kd_tree = tree
Пример #27
0
class Converter(object):

    TARGET_NUM_FACET = 2000
    DEFAULT_OCTREE = 3

    @elapsed
    def __init__(self, src):
        self.src = src
        self.decimated = None
        self.src_kd = None
        self.voxel_list = Manager().list()
        self.mesh_list = Manager().list()
        self.color_dict = {}
        self.parent = None
        self.block_map = Manager().list()
        self.unit = None
        self.join = True

        # Initial procedure
        self.__calc_decimated()
        self.__build_src_kd()
        self.__create_color_dict()
        bpy.ops.object.select_all(action="DESELECT")

    @elapsed
    def __calc_decimated(self):
        num_facet = len(self.src.data.polygons)
        ratio = float(Converter.TARGET_NUM_FACET) / float(num_facet)

        mesh = bpy.data.meshes.new("Decimated")
        self.decimated = bpy.data.objects.new("Decimated", mesh)
        self.decimated.data = self.src.data.copy()
        self.decimated.scale = self.src.scale
        self.decimated.location = self.src.location

        bpy.context.scene.objects.link(self.decimated)
        self.decimated.select = True

        self.decimated.modifiers.new("Decimate", "DECIMATE")
        self.decimated.modifiers["Decimate"].ratio = ratio
        bpy.ops.object.modifier_apply(apply_as="DATA", modifier="DECIMATE")

    @elapsed
    def __build_src_kd(self):
        mesh = self.decimated.data
        size = len(mesh.vertices)
        self.src_kd = KDTree(size)

        for i, v in enumerate(mesh.vertices):
            self.src_kd.insert(v.co, i)
        self.src_kd.balance()

    @elapsed
    def __create_color_dict(self):
        for i, loop in enumerate(self.decimated.data.loops):
            vi = loop.vertex_index
            if vi not in self.color_dict:
                self.color_dict[vi] = i

    @elapsed
    def apply_join(self):
        if self.join:
            bpy.ops.object.join()

    @elapsed
    def cleanup(self):
        bpy.context.scene.objects.unlink(self.decimated)

    @staticmethod
    def create_new_octree(box):
        box0 = (
            box[0],
            (box[0] + box[1])/2.0,
            (box[0] + box[2])/2.0,
            (box[0] + box[3])/2.0,
            (box[0] + box[4])/2.0,
            (box[0] + box[5])/2.0,
            (box[0] + box[6])/2.0,
            (box[0] + box[7])/2.0,
        )

        box1 = (
            # Left side
            (box[0] + box[1])/2.0,
            box[1],
            (box[1] + box[2])/2.0,
            (box[0] + box[2])/2.0,
            # Right side
            (box[0] + box[5])/2.0,
            (box[1] + box[5])/2.0,
            (box[1] + box[6])/2.0,
            (box[0] + box[6])/2.0,
        )

        box2 = (
            # Left side
            (box[0] + box[2])/2.0,
            (box[1] + box[2])/2.0,
            box[2],
            (box[2] + box[3])/2.0,
            # Right side
            (box[0] + box[6])/2.0,
            (box[1] + box[6])/2.0,
            (box[2] + box[6])/2.0,
            (box[3] + box[6])/2.0
        )

        box3 = (
            # Left side
            (box[0] + box[3])/2.0,
            (box[0] + box[2])/2.0,
            (box[2] + box[3])/2.0,
            box[3],
            # Right side
            (box[0] + box[7])/2.0,
            (box[0] + box[6])/2.0,
            (box[3] + box[6])/2.0,
            (box[3] + box[7])/2.0,
        )

        box4 = (
            # Left side
            (box[0] + box[4])/2.0,
            (box[0] + box[5])/2.0,
            (box[0] + box[6])/2.0,
            (box[0] + box[7])/2.0,
            # Right side
            box[4],
            (box[4] + box[5])/2.0,
            (box[4] + box[6])/2.0,
            (box[4] + box[7])/2.0,
        )

        box5 = (
            # Left side
            (box[0] + box[5])/2.0,
            (box[1] + box[5])/2.0,
            (box[1] + box[6])/2.0,
            (box[0] + box[6])/2.0,
            # Right side
            (box[4] + box[5])/2.0,
            box[5],
            (box[5] + box[6])/2.0,
            (box[4] + box[6])/2.0,
        )

        box6 = (
            # Left side
            (box[0] + box[6])/2.0,
            (box[1] + box[6])/2.0,
            (box[2] + box[6])/2.0,
            (box[3] + box[6])/2.0,
            # Right side
            (box[4] + box[6])/2.0,
            (box[5] + box[6])/2.0,
            box[6],
            (box[6] + box[7])/2.0,
        )

        box7 = (
            # Left side
            (box[0] + box[7])/2.0,
            (box[0] + box[6])/2.0,
            (box[3] + box[6])/2.0,
            (box[3] + box[7])/2.0,
            # Right side
            (box[4] + box[7])/2.0,
            (box[4] + box[6])/2.0,
            (box[6] + box[7])/2.0,
            box[7],
        )
        return box0, box1, box2, box3, box4, box5, box6, box7

    @staticmethod
    def get_bvhtree_from_box(box):
        mesh_data = bpy.data.meshes.new("cube_mesh_data")
        faces = [(0, 1, 2, 3),
                 (4, 7, 6, 5),
                 (0, 4, 5, 1),
                 (1, 5, 6, 2),
                 (2, 3, 7, 6),
                 (4, 0, 3, 7)]
        mesh_data.from_pydata([x.to_tuple() for x in box], [], faces)
        mesh_data.update()
        bm = bmesh.new()
        bm.from_mesh(mesh_data)
        return bvh.BVHTree.FromBMesh(bm)

    @staticmethod
    def check_if_overlap(obj, box):
        bvh_tree1 = bvh.BVHTree.FromObject(obj, bpy.context.scene)
        bvh_tree2 = Converter.get_bvhtree_from_box(box)
        return bvh_tree1.overlap(bvh_tree2)

    @elapsed
    def invoke(self, obj, box, max_depth):
        try:
            self.invoke_create_voxel(obj, box, max_depth)
            self.draw_voxel(origin=box[0])
        finally:
            # Post procedure
            self.apply_join()
            self.cleanup()
            return list(self.block_map)

    @elapsed
    def invoke_create_voxel(self, obj, box, max_depth):
        # Calc unit length
        self.unit = (box[1].z - box[0].z) / float(2 ** max_depth)

        overlap = Converter.check_if_overlap(obj, box)
        if overlap:
            boxes = Converter.create_new_octree(box)
            jobs = []
            for child in boxes:
                p = Process(
                    target=self.create_voxel,
                    args=(obj, child, 1, self.voxel_list, max_depth)
                )
                jobs.append(p)
                p.start()

            [job.join() for job in jobs]

    def create_voxel(self, obj, box, depth, queue, max_depth=3):
        """For multiprocessing
        :param obj:
        :param box:
        :param depth:
        :param queue:
        :param max_depth:
        :return:
        """
        depth += 1

        overlap = Converter.check_if_overlap(obj, box)
        if overlap:
            if depth == max_depth:
                queue.append([x.to_tuple() for x in box])
            else:
                boxes = Converter.create_new_octree(box)
                for _child in boxes:
                    self.create_voxel(obj, _child, depth, queue, max_depth)

    def calc_mesh_and_color(self, voxel_list, mesh_list, block_list, origin):
        """For multiprocessing
        :param list voxel_list:
        :param list mesh_list:
        :param list block_list:
        :param mathutils.Vector origin:
        """
        faces = ((0, 1, 2, 3), (4, 7, 6, 5), (0, 4, 5, 1),
                 (1, 5, 6, 2), (2, 3, 7, 6), (4, 0, 3, 7))

        for i, voxel in enumerate(voxel_list):
            mesh = bpy.data.meshes.new("cube_mesh_data")
            mesh.from_pydata(voxel, [], faces)
            mesh.update()

            # Find closest color
            co, index, dist = self.src_kd.find(voxel[0])
            if self.decimated.data.vertex_colors:
                rgb = self.decimated.data.vertex_colors["Col"].data[self.color_dict[index]].color
            else:
                rgb = (1.0, 1.0, 1.0)  # White

            mesh_list.append((voxel, tuple(rgb)))

            ix = int(round((voxel[0][0] - origin.x) / self.unit))
            iy = int(round((voxel[0][1] - origin.y) / self.unit))
            iz = int(round((voxel[0][2] - origin.z) / self.unit))
            col_def = BlockDef.find_nearest_color_block(Vector(rgb))

            block_list.append(BlockInfo(
                has_block=True,
                block_type=col_def.block_def[0],
                color=col_def.block_def[1],
                pos=(ix, iy, iz)
            ))

    @elapsed
    def draw_voxel(self, origin):
        # Add null object
        self.parent = bpy.data.objects.new("Voxcel", bpy.data.meshes.new("Voxcel"))
        bpy.context.scene.objects.link(self.parent)
        bpy.context.scene.objects.active = self.parent
        self.parent.select = True

        def chunks(l, n):
            """Yield successive n-sized chunks from l."""
            for i in range(0, len(l), n):
                yield l[i:i+n]

        parallels = 8
        chunk_list = chunks(
            self.voxel_list,
            len(self.voxel_list)//parallels
        )

        jobs = []
        for chunk in chunk_list:
            job = Process(
                target=self.calc_mesh_and_color,
                args=(chunk, self.mesh_list, self.block_map, origin)
            )
            jobs.append(job)
            job.start()

        [job.join() for job in jobs]

        @elapsed
        def add_voxels():
            for i, item in enumerate(self.mesh_list):
                vertices = item[0]
                color = item[1]
                name = "Cube.%010d" % i

                voxel.Voxel(name, vertices, color).create().add(
                    scene=bpy.context.scene,
                    parent=self.parent
                )

        add_voxels()
Пример #28
0
 def getValue(self):
     kdTree = KDTree(0)
     kdTree.balance()
     return kdTree
Пример #29
0
def kd_from_points(points):
    tree = KDTree(len(points))
    for i, p in enumerate(points):
        tree.insert(p, i)
    tree.balance()
    return tree
Пример #30
0
    def simplify_mesh(self, bm):
        class Ownership:
            def __init__(self, particle, dist):
                self.particle = particle
                self.distance = dist
                self.valid = False

        bmesh.ops.triangulate(bm, faces=bm.faces)
        last_edges = float("+inf")
        while True:
            edges = set()
            for edge in bm.edges:
                le = (edge.verts[0].co - edge.verts[1].co).length_squared
                center = edge.verts[0].co + edge.verts[1].co
                center /= 2
                for p, dist in self.get_nearest(center, 1):
                    if p.radius**2 < le:
                        edges.add(edge)
            if not len(edges) < last_edges:
                break
            last_edges = len(edges)
            bmesh.ops.subdivide_edges(bm, edges=list(edges), cuts=1)
            bmesh.ops.triangulate(bm, faces=bm.faces)

        bm.faces.ensure_lookup_table()
        bm.verts.ensure_lookup_table()
        tree = KDTree(len(bm.verts))
        for vert in bm.verts:
            tree.insert(vert.co, vert.index)
        tree.balance()

        ownership_mapping = {}
        ownership_validation_front = set()

        for vert in bm.verts:
            for p, dist in self.get_nearest(vert.co, 1):
                ownership_mapping[vert] = Ownership(p, dist)

        for particle in self.particles:
            location, index, dist = tree.find(particle.location)
            vert = bm.verts[index]
            if vert in ownership_mapping:
                if ownership_mapping[vert].particle == particle:
                    ownership_mapping[vert].valid = True
                    ownership_validation_front.add(vert)

        while True:
            new_front = set()
            for vert in ownership_validation_front:
                for edge in vert.link_edges:
                    other_vert = edge.other_vert(vert)
                    if other_vert not in ownership_mapping:
                        continue
                    if ownership_mapping[other_vert].valid:
                        continue
                    if other_vert in ownership_mapping:
                        if ownership_mapping[
                                vert].particle is ownership_mapping[
                                    other_vert].particle:
                            new_front.add(other_vert)
                            ownership_mapping[other_vert].valid = True
            ownership_validation_front = new_front
            if not new_front:
                break

        new_bm = bmesh.new()
        for particle in self.particles:
            particle.vert = new_bm.verts.new(particle.location)

        for face in bm.faces:
            connections = set()
            for vert in face.verts:
                if vert in ownership_mapping:
                    if ownership_mapping[vert].valid:
                        p = ownership_mapping[vert].particle
                        connections.add(p)
            if len(connections) == 3:
                try:
                    new_bm.faces.new(
                        [particle.vert for particle in connections])
                except ValueError:
                    pass
        while True:
            stop = True
            for vert in new_bm.verts:
                if len(vert.link_edges) < 3:
                    new_bm.verts.remove(vert)
                    stop = False
            if stop:
                break

        bmesh.ops.holes_fill(new_bm, edges=new_bm.edges)
        bmesh.ops.triangulate(new_bm, faces=new_bm.faces)
        bmesh.ops.recalc_face_normals(new_bm, faces=new_bm.faces)
        if not self.triangle_mode:
            bmesh.ops.join_triangles(new_bm,
                                     faces=new_bm.faces,
                                     angle_face_threshold=1.0,
                                     angle_shape_threshold=3.14)

        return new_bm
Пример #31
0
class SvSolidTopology(object):
    class Item(object):
        def __init__(self, item):
            self.item = item

        def __hash__(self):
            return self.item.hashCode()

        def __eq__(self, other):
            return self.item.isSame(other.item)

        def __repr__(self):
            return f"<Item: {type(self.item).__name__} #{self.item.hashCode()}>"

    def __init__(self, solid):
        self.solid = solid
        self._init()

    def __repr__(self):
        v = len(self.solid.Vertexes)
        e = len(self.solid.Edges)
        f = len(self.solid.Faces)
        return f"<Solid topology: {v} vertices, {e} edges, {f} faces>"

    def _init(self):
        self._faces_by_vertex = defaultdict(set)
        self._faces_by_edge = defaultdict(set)
        self._edges_by_vertex = defaultdict(set)

        for face in self.solid.Faces:
            for vertex in face.Vertexes:
                self._faces_by_vertex[SvSolidTopology.Item(vertex)].add(
                    SvSolidTopology.Item(face))
            for edge in face.Edges:
                self._faces_by_edge[SvSolidTopology.Item(edge)].add(
                    SvSolidTopology.Item(face))

        for edge in self.solid.Edges:
            for vertex in edge.Vertexes:
                self._edges_by_vertex[SvSolidTopology.Item(vertex)].add(
                    SvSolidTopology.Item(edge))

        self._tree = KDTree(len(self.solid.Vertexes))
        for i, vertex in enumerate(self.solid.Vertexes):
            co = (vertex.X, vertex.Y, vertex.Z)
            self._tree.insert(co, i)
        self._tree.balance()

    def tessellate(self, precision):
        self._points_by_edge = defaultdict(list)
        self._points_by_face = defaultdict(list)

        for edge in self.solid.Edges:
            points = edge.discretize(Deflection=precision)
            i_edge = SvSolidTopology.Item(edge)
            for pt in points:
                self._points_by_edge[i_edge].append((pt.x, pt.y, pt.z))

        for face in self.solid.Faces:
            data = face.tessellate(precision)
            i_face = SvSolidTopology.Item(face)
            for pt in data[0]:
                self._points_by_face[i_face].append((pt.x, pt.y, pt.z))

    def calc_normals(self):
        self._normals_by_face = dict()
        for face in self.solid.Faces:
            #face.tessellate(precision)
            #u_min, u_max, v_min, v_max = face.ParameterRange
            sum_normal = Base.Vector(0, 0, 0)
            for u, v in face.getUVNodes():
                normal = face.normalAt(u, v)
                sum_normal = sum_normal + normal
            sum_normal = np.array([sum_normal.x, sum_normal.y, sum_normal.z])
            sum_normal = sum_normal / np.linalg.norm(sum_normal)
            self._normals_by_face[SvSolidTopology.Item(face)] = sum_normal

    def get_normal_by_face(self, face):
        return self._normals_by_face[SvSolidTopology.Item(face)]

    def get_vertices_by_location(self, condition):
        to_tuple = lambda v: (v.X, v.Y, v.Z)
        return [
            to_tuple(v) for v in self.solid.Vertexes if condition(to_tuple(v))
        ]

    def get_vertices_by_location_mask(self, condition):
        to_tuple = lambda v: (v.X, v.Y, v.Z)
        return [condition(to_tuple(v)) for v in self.solid.Vertexes]

    def get_points_by_edge(self, edge):
        return self._points_by_edge[SvSolidTopology.Item(edge)]

    def get_points_by_face(self, face):
        return self._points_by_face[SvSolidTopology.Item(face)]

    def get_edges_by_location_mask(self, condition, include_partial):
        # condition is vectorized
        check = any if include_partial else all
        mask = []
        for edge in self.solid.Edges:
            test = condition(
                np.array(self._points_by_edge[SvSolidTopology.Item(edge)]))
            mask.append(check(test))
        return mask

    def get_faces_by_location_mask(self, condition, include_partial):
        # condition is vectorized
        check = any if include_partial else all
        mask = []
        for face in self.solid.Faces:
            test = condition(
                np.array(self._points_by_face[SvSolidTopology.Item(face)]))
            mask.append(check(test))
        return mask

    def get_faces_by_vertex(self, vertex):
        return [
            i.item for i in self._faces_by_vertex[SvSolidTopology.Item(vertex)]
        ]

    def get_faces_by_vertices_mask(self, vertices, include_partial=True):
        if include_partial:
            good = set()
            for vertex in vertices:
                new = self._faces_by_vertex[SvSolidTopology.Item(vertex)]
                good.update(new)
            return [
                SvSolidTopology.Item(face) in good for face in self.solid.Faces
            ]
        else:
            vertices = set([SvSolidTopology.Item(v) for v in vertices])
            mask = []
            for face in self.solid.Faces:
                ok = all(
                    SvSolidTopology.Item(v) in vertices for v in face.Vertexes)
                mask.append(ok)
            return mask

    def get_faces_by_edge(self, edge):
        return [
            i.item for i in self._faces_by_edge[SvSolidTopology.Item(edge)]
        ]

    def get_faces_by_edges_mask(self, edges, include_partial=True):
        if include_partial:
            good = set()
            for edge in edges:
                new = self._faces_by_edge[SvSolidTopology.Item(edge)]
                good.update(new)
            return [
                SvSolidTopology.Item(face) in good for face in self.solid.Faces
            ]
        else:
            edges = set([SvSolidTopology.Item(e) for e in edges])
            mask = []
            for face in self.solid.Faces:
                ok = all(SvSolidTopology.Item(e) in edges for e in face.Edges)
                mask.append(ok)
            return mask

    def get_edges_by_vertex(self, vertex):
        return [
            i.item for i in self._edges_by_vertex[SvSolidTopology.Item(vertex)]
        ]

    def get_edges_by_vertices_mask(self, vertices, include_partial=True):
        if include_partial:
            good = set()
            for vertex in vertices:
                new = self._edges_by_vertex[SvSolidTopology.Item(vertex)]
                good.update(new)
            return [
                SvSolidTopology.Item(edge) in good for edge in self.solid.Edges
            ]
        else:
            vertices = set([SvSolidTopology.Item(v) for v in vertices])
            mask = []
            for edge in self.solid.Edges:
                ok = all(
                    SvSolidTopology.Item(v) in vertices for v in edge.Vertexes)
                mask.append(ok)
            return mask

    def get_edges_by_faces_mask(self, faces):
        good = set()
        for face in faces:
            new = set([SvSolidTopology.Item(e) for e in face.Edges])
            good.update(new)
        return [
            SvSolidTopology.Item(edge) in good for edge in self.solid.Edges
        ]

    def get_vertices_by_faces_mask(self, faces):
        good = set()
        for face in faces:
            new = set([SvSolidTopology.Item(v) for v in face.Vertexes])
            good.update(new)
        return [
            SvSolidTopology.Item(vertex) in good
            for vertex in self.solid.Vertexes
        ]

    def get_vertices_by_edges_mask(self, edges):
        good = set()
        for edge in edges:
            new = set([SvSolidTopology.Item(v) for v in edge.Vertexes])
            good.update(new)
        return [
            SvSolidTopology.Item(vertex) in good
            for vertex in self.solid.Vertexes
        ]

    def get_vertices_within_range(self, origin, distance):
        found = self._tree.find_range(tuple(origin), distance)
        idxs = [item[1] for item in found]
        vertices = [self.solid.Vertexes[i] for i in idxs]
        return vertices

    def get_vertices_within_range_mask(self, origin, distance):
        found = self._tree.find_range(tuple(origin), distance)
        idxs = set([item[1] for item in found])
        return [i in idxs for i in range(len(self.solid.Vertexes))]
    def finish(self, context):
        #ray cast the entire grid into
        
        if 'Posterior Plane' in bpy.data.objects:
            Plane = bpy.data.objects['Posterior Plane']
            Plane.hide = False
                
        else:
            me = bpy.data.meshes.new('Posterior Plane')
            Plane = bpy.data.objects.new('Posterior Plane', me)
            context.scene.objects.link(Plane)
        
        
        pbme = bmesh.new()
        pbme.verts.ensure_lookup_table()
        pbme.edges.ensure_lookup_table()
        pbme.faces.ensure_lookup_table()
        bmesh.ops.create_grid(pbme, x_segments = 200, y_segments = 200, size = 39.9)
        pbme.to_mesh(Plane.data)
        
        pt, pno = calculate_plane(self.crv.b_pts)
        
        if self.splint.jaw_type == 'MANDIBLE':
            Zw = Vector((0,0,-1))
            Xw = Vector((1,0,0))
            Yw = Vector((0,-1,1))
            
        else:
            Zw = Vector((0,0,1))
            Xw = Vector((1,0,0))
            Yw = Vector((0,1,0))
            
        Z = pno
        Z.normalize()
        
        if Zw.dot(Z) < 0:
            Z *= -1
            
        Y = Z.cross(Xw)
        X = Y.cross(Z)
            
        
        R = Matrix.Identity(3)  #make the columns of matrix U, V, W
        R[0][0], R[0][1], R[0][2]  = X[0] ,Y[0],  Z[0]
        R[1][0], R[1][1], R[1][2]  = X[1], Y[1],  Z[1]
        R[2][0] ,R[2][1], R[2][2]  = X[2], Y[2],  Z[2]
        
        R = R.to_4x4()
        T = Matrix.Translation(pt - 5 * Z)
        
        Plane.matrix_world = T * R
    
        pmx = Plane.matrix_world
        ipmx = pmx.inverted()
        
        bme_pln = bmesh.new()
        bme_pln.from_mesh(Plane.data)
        bme_pln.verts.ensure_lookup_table()
        bme_pln.edges.ensure_lookup_table()
        bme_pln.faces.ensure_lookup_table()
        bvh = BVHTree.FromBMesh(bme_pln)
        
        
        #we are going to raycast the user world coordinate points
        #into a grid, and identify all points in the grid from the local Z direction
        #Then we will store the local location of the user picked coordinate in a dictionary
        key_verts = {}
        
        for loc in self.crv.b_pts:

            res = bvh.ray_cast(ipmx * loc, -Z, 30)
            if res[0] != None:
                
                f = bme_pln.faces[res[2]]
                for v in f.verts:
                    key_verts[v] = ipmx * loc
                    v.select_set(True)
                
                continue
            
            res = bvh.ray_cast(ipmx * loc, Z, 30)
            if res[0] != None:
                
                f = bme_pln.faces[res[2]]
                for v in f.verts:
                    key_verts[v] = ipmx * loc
                    v.select_set(True)
                
                continue
        
        #bme_pln.to_mesh(Plane.data)
        #bme_pln.free()
        #return
        kdtree = KDTree(len(key_verts))
        for v in key_verts.keys():
            kdtree.insert(v.co, v.index)
        
        kdtree.balance()
        
        #raycast  the shell if we can
        raycast_shell = False
        if 'Splint Shell' in bpy.data.objects:
            shell = bpy.data.objects.get('Splint Shell')
            bvh_shell = BVHTree.FromObject(shell, context.scene)
            mx_shell = shell.matrix_world
            imx_shell = mx_shell.inverted()
            Z_shell = imx_shell.to_3x3()*Z
            raycast_shell = True
            
        
        right_side = set()
        left_side = set()
        ray_casted = set()
        
        to_delete = set()
        
        for v in bme_pln.verts:
            if v in key_verts:
                v.co[2] = key_verts[v][2]
               
                if v.co[1] > 0:
                    left_side.add(v)
                else:
                    right_side.add(v)
                continue
                
            results = kdtree.find_range(v.co, .5)
            if len(results):
                N = len(results)
                r_total = 0
                v_new = Vector((0,0,0))
                for res in results:
                    r_total += 1/res[2]
                    v_new += (1/res[2]) * key_verts[bme_pln.verts[res[1]]]
                        
                v_new *= 1/r_total
                v.co[2] = v_new[2]
                if v.co[1] > 0:
                    left_side.add(v)
                else:
                    right_side.add(v)
                continue
                        
            results = kdtree.find_range(v.co, 6)
            if len(results):
                N = len(results)
                r_total = 0
                v_new = Vector((0,0,0))
                for res in results:
                    r_total += (1/res[2])**2
                    v_new += ((1/res[2])**2) * key_verts[bme_pln.verts[res[1]]]
                        
                v_new *= 1/r_total
                v.co[2] = v_new[2]
                if v.co[1] > 0:
                    left_side.add(v)
                else:
                    right_side.add(v)
                continue
            
            loc, no, index, d = bvh_shell.ray_cast(imx_shell * pmx * v.co, Z_shell)
            if loc:
                
                ray_casted.add(v)
                results = kdtree.find_n(v.co, 4)
                N = len(results)
                r_total = 0
                v_new = Vector((0,0,0))
                for res in results:
                    r_total += (1/res[2])**2
                    v_new += ((1/res[2])**2) * key_verts[bme_pln.verts[res[1]]]
                        
                v_new *= 1/r_total
                v.co[2] = v_new[2]
                continue

        total_verts = ray_casted | left_side | right_side
        
        ant_left = max(left_side, key = lambda x: x.co[0])
        ant_right = max(right_side, key = lambda x: x.co[0])
        
        new_verts = set()
        dilation_verts = set()  
        for v in total_verts:
            for ed in v.link_edges:
                v_new = ed.other_vert(v)
                if v_new in total_verts or v_new in new_verts: 
                    continue
                else:
                    new_verts.add(v_new)
                    
        print('adding %i new verts' % len(new_verts))
        
        
        total_verts.update(new_verts)
        dilation_verts.update(new_verts)
        
        #for v in ray_casted:
        #    if v.co[1] > 0:
        #        if v.co[0] > ant_left.co[0]:
        #            to_delete.add(v)
        #    else:
        #        if v.co[0] > ant_right.co[0]:
        #            to_delete.add(v)
        
        #print('added %i ray_casted' % len(ray_casted))
        #total_verts = ray_casted | left_side | right_side
        #total_verts.difference_update(to_delete)       
        
        #new_verts = set()   
        #for v in total_verts:
        #    for ed in v.link_edges:
        #        v_new = ed.other_vert(v)
        #        if v_new in total_verts: continue
                
        #        if v_new.co[1] > 0 and v_new.co[0] < ant_left.co[0]:
        #            if v in to_delete:
        #                new_verts.add(v)
        #        if v_new.co[1] <= 0 and v_new.co[0] < ant_right.co[0]:
        #            if v in to_delete:
        #                new_verts.add(v)   
        
        #to_delete.difference_update(new_verts)
        
        #print('adding %i new verts' % len(new_verts))   
        for j in range(0,3):
            newer_verts = set()  
            for v in new_verts:
                for ed in v.link_edges:
                    v_new = ed.other_vert(v)
                    if v_new in total_verts or v_new in newer_verts:
                        continue
                     
                    newer_verts.add(v_new)
                    
            
                       
            total_verts.update(newer_verts)
            dilation_verts.update(newer_verts)
            new_verts = newer_verts
        
        to_delete = set(bme_pln.verts[:]) - total_verts
        
        #filter out anteior dilation
        for v in dilation_verts:
            
            if v.co[1] > 0 and v.co[0] > ant_left.co[0]:
                to_delete.add(v)
                continue
            if v.co[1] <= 0 and v.co[0] > ant_right.co[0]:
                to_delete.add(v)
                continue
                
             
            results = kdtree.find_n(v.co, 4)
            N = len(results)
            r_total = 0
            v_new = Vector((0,0,0))
            for res in results:
                r_total += (1/res[2])**2
                v_new += ((1/res[2])**2) * key_verts[bme_pln.verts[res[1]]]
                        
            v_new *= 1/r_total
            v.co[2] = v_new[2]
            
        #filter out anteior dilation
        for v in ray_casted:
            if v.co[1] > 0 and v.co[0] > ant_left.co[0]:
                to_delete.add(v)
                continue
            if v.co[1] <= 0 and v.co[0] > ant_right.co[0]:
                to_delete.add(v)
                continue
                            
        bmesh.ops.delete(bme_pln, geom = list(to_delete), context = 1)
        bme_pln.to_mesh(Plane.data)
        Plane.data.update()
        
        smod = Plane.modifiers.new('Smooth', type = 'SMOOTH')
        smod.iterations = 5
        smod.factor = 1
        
        self.splint.ops_string += 'Mark Posterior Cusps:'
Пример #33
0
class ParticleManager:
    def __init__(self, obj):
        self.particles = []
        self.obj = obj
        self.field = vector_fields.FrameField(obj)

        self.inv_mat = obj.matrix_world.inverted()

        self.bm = self.field.bm
        self.kd_tree = KDTree(0)
        self.kd_tree.balance()
        self.draw_obj = draw_3d.DrawObject()

        self.triangle_mode = False

    def build_field(self, context, use_gp, x_mirror):
        self.field.build_major_curvatures()
        frame = get_gp_frame(context)
        if frame:
            self.field.from_grease_pencil(frame,
                                          mat=self.inv_mat,
                                          x_mirror=x_mirror)
            self.field.marching_growth()
            self.field.smooth(2)

        else:
            self.field.erase_part(2)
            self.field.marching_growth()
            self.field.smooth()

    def build_kdtree(self):
        tree = KDTree(len(self.particles))
        for id, p in enumerate(self.particles):
            tree.insert(p.location, id)
        tree.balance()
        self.kd_tree = tree

    def initialize_particles_from_gp(self, resolution, adaptive, context):
        scale = max(self.obj.dimensions) / max(self.obj.scale)
        target_resolution = scale / resolution
        frame = get_gp_frame(context)
        created_particles = 0
        if not frame:
            return created_particles
        for stroke in frame.strokes:
            co = self.inv_mat * stroke.points[0].co
            last_particle = self.create_particle(Partile, co)
            last_particle.target_resolution = target_resolution
            last_particle.radius = target_resolution / (
                last_particle.last_hit.curvature * adaptive + (1 - adaptive))
            last_particle.adaptive = adaptive
            created_particles += 1
            for point in stroke.points:
                co = self.inv_mat * point.co
                if (co - last_particle.location
                    ).length >= last_particle.radius * 2:
                    last_particle = self.create_particle(Partile, co)
                    last_particle.target_resolution = target_resolution
                    last_particle.radius = target_resolution / (
                        last_particle.last_hit.curvature * adaptive +
                        (1 - adaptive))
                    last_particle.adaptive = adaptive
                    created_particles += 1
        return created_particles

    def initialize_from_features(self,
                                 verts,
                                 resolution=20,
                                 adaptive=0,
                                 count=50):
        scale = max(self.obj.dimensions) / max(self.obj.scale)
        target_resolution = scale / resolution
        verts = sorted(self.field.bm.verts,
                       key=lambda v: self.field.sharpness_field.get(
                           v.index, float("inf")),
                       reverse=True)
        for i in range(min(count, len(self.field.bm.verts))):
            vert = verts[i]
            co = vert.co.copy()
            p1 = self.create_particle(Partile, co)
            p1.radius = target_resolution
            p1.target_resolution = target_resolution
            p1.adaptive = adaptive

    def initialize_from_verts(self, verts, adaptive):
        for vert in verts:
            p = self.create_particle(Partile, vert.co)
            p.adaptive = adaptive

    def initialize_grid(self,
                        verts,
                        resolution=20,
                        use_x_mirror=True,
                        adaptive=0):
        particle_locations = set()
        scale = max(self.obj.dimensions)
        target_resolution = 1 / ((1 / scale) * resolution)
        for vert in verts:
            co = vert.co.copy()
            co /= scale
            co *= resolution
            x = int(co.x)
            y = int(co.y)
            z = int(co.z)
            if use_x_mirror:
                if x > 0:
                    particle_locations.add((x, y, z))
            else:
                particle_locations.add((x, y, z))

        for location in particle_locations:
            co = Vector(location)
            co *= scale
            co /= resolution
            hit = self.sample_surface(co)
            p1 = self.create_particle(Partile, hit.co)
            p1.adaptive = adaptive
            p1.target_resolution = target_resolution
            if use_x_mirror:
                hit.co.x *= -1
                p2 = self.create_particle(Partile, hit.co)
                p2.adaptive = adaptive
                p2.target_resolution = target_resolution
                p1.counter_pair, p2.counter_pair = p2, p1

    def mirror_particles(self, any_side=False):
        new_particles = []
        for particle in self.particles:
            if particle.location.x > particle.radius or any_side:
                co = particle.location.copy()
                co.x *= -1
                p1 = particle
                p2 = Partile(co, self)
                p2.radius = p1.radius
                p2.tag = p1.tag
                p2.adaptive = p1.adaptive
                p2.target_resolution = p1.target_resolution
                p1.counter_pair, p2.counter_pair = p2, p1
                new_particles.append(p2)
                new_particles.append(p1)

            elif -particle.radius * 0.5 < particle.location.x < particle.radius * 0.5:
                new_particles.append(particle)
                particle.lock_x = True

        self.particles = new_particles
        self.build_kdtree()

    def create_particle(self, type, location, prepend=False):
        p = type(location, self)
        if not prepend:
            self.particles.append(p)
        else:
            self.particles.insert(0, p)
        return p

    def remove_particle(self, particle):
        self.particles.remove(particle)

    def step(
        self,
        speed,
    ):
        new_tree = KDTree(len(self.particles))
        self.draw_obj.commands.clear()
        for id, particle in enumerate(self.particles):
            particle.step(speed)
            particle.draw()
            new_tree.insert(particle.location, id)
        new_tree.balance()
        self.kd_tree = new_tree

    def spread_step(self):
        count = 0
        new_particles = []
        self.draw_obj.commands.clear()

        for particle in self.particles:
            new_particles += particle.spread()
            count += len(new_particles)

        for particle in self.particles:
            if not particle.tag == "REMOVE":
                new_particles.append(particle)
        self.particles = new_particles

        new_tree = KDTree(len(self.particles))
        for id, particle in enumerate(self.particles):
            particle.draw()
            new_tree.insert(particle.location, id)
        new_tree.balance()
        self.kd_tree = new_tree

        return count

    def get_nearest(self, location, n):
        for location, index, dist in self.kd_tree.find_n(location, n):
            yield self.particles[index], dist

    def sample_surface(self, location):
        return self.field.sample_point(location)

    def draw(self):
        self.draw_obj.commands.clear()
        for particle in self.particles:
            particle.draw()

    def simplify_mesh(self, bm):
        class Ownership:
            def __init__(self, particle, dist):
                self.particle = particle
                self.distance = dist
                self.valid = False

        bmesh.ops.triangulate(bm, faces=bm.faces)
        last_edges = float("+inf")
        while True:
            edges = set()
            for edge in bm.edges:
                le = (edge.verts[0].co - edge.verts[1].co).length_squared
                center = edge.verts[0].co + edge.verts[1].co
                center /= 2
                for p, dist in self.get_nearest(center, 1):
                    if p.radius**2 < le:
                        edges.add(edge)
            if not len(edges) < last_edges:
                break
            last_edges = len(edges)
            bmesh.ops.subdivide_edges(bm, edges=list(edges), cuts=1)
            bmesh.ops.triangulate(bm, faces=bm.faces)

        bm.faces.ensure_lookup_table()
        bm.verts.ensure_lookup_table()
        tree = KDTree(len(bm.verts))
        for vert in bm.verts:
            tree.insert(vert.co, vert.index)
        tree.balance()

        ownership_mapping = {}
        ownership_validation_front = set()

        for vert in bm.verts:
            for p, dist in self.get_nearest(vert.co, 1):
                ownership_mapping[vert] = Ownership(p, dist)

        for particle in self.particles:
            location, index, dist = tree.find(particle.location)
            vert = bm.verts[index]
            if vert in ownership_mapping:
                if ownership_mapping[vert].particle == particle:
                    ownership_mapping[vert].valid = True
                    ownership_validation_front.add(vert)

        while True:
            new_front = set()
            for vert in ownership_validation_front:
                for edge in vert.link_edges:
                    other_vert = edge.other_vert(vert)
                    if other_vert not in ownership_mapping:
                        continue
                    if ownership_mapping[other_vert].valid:
                        continue
                    if other_vert in ownership_mapping:
                        if ownership_mapping[
                                vert].particle is ownership_mapping[
                                    other_vert].particle:
                            new_front.add(other_vert)
                            ownership_mapping[other_vert].valid = True
            ownership_validation_front = new_front
            if not new_front:
                break

        new_bm = bmesh.new()
        for particle in self.particles:
            particle.vert = new_bm.verts.new(particle.location)

        for face in bm.faces:
            connections = set()
            for vert in face.verts:
                if vert in ownership_mapping:
                    if ownership_mapping[vert].valid:
                        p = ownership_mapping[vert].particle
                        connections.add(p)
            if len(connections) == 3:
                try:
                    new_bm.faces.new(
                        [particle.vert for particle in connections])
                except ValueError:
                    pass
        while True:
            stop = True
            for vert in new_bm.verts:
                if len(vert.link_edges) < 3:
                    new_bm.verts.remove(vert)
                    stop = False
            if stop:
                break

        bmesh.ops.holes_fill(new_bm, edges=new_bm.edges)
        bmesh.ops.triangulate(new_bm, faces=new_bm.faces)
        bmesh.ops.recalc_face_normals(new_bm, faces=new_bm.faces)
        if not self.triangle_mode:
            bmesh.ops.join_triangles(new_bm,
                                     faces=new_bm.faces,
                                     angle_face_threshold=1.0,
                                     angle_shape_threshold=3.14)

        return new_bm
Пример #34
0
class Particle_system:
    
    
    def __init__(self, guide, ground, scale):
        
        self.GUIDE_STRENGTH = 1.0 * scale

        self.TURBULENCE_FREQUENCY = 10 * scale
        self.TURBULENCE_STRENGTH = 1.0 * scale

        self.AVOID_THRESHOLD = 0.01 * scale
        self.AVOID_STRENGTH = 0.2 * scale
        
        self.frame = 0
        
        self.particles = []
        self.guide = guide
#        self.vertex_distance = (self.guide.data.vertices[0].co - self.guide.data.vertices[1].co).length_squared
        
        self.guide_tree = KDTree(len(self.guide.data.vertices))
        for v in self.guide.data.vertices:
            self.guide_tree.insert(v.co, v.index)
        self.guide_tree.balance()
        
        self.ground = ground
        self.scale = scale
        
#        bpy.ops.mesh.primitive_ico_sphere_add(location=(0,0,0), size=0.01)
#        self.instance_obj = bpy.context.object
#        self.instance_obj = bpy.data.objects['Fleche']
        self.instance_obj = bpy.data.objects[bpy.context.scene.ant_instance]
        self.instance_mesh = self.instance_obj.data
#        self.instance_mesh.materials.append(bpy.data.materials['noir'])
        
        
    def add_particles(self, particles_number):
        '''Add a new particle to the system'''
        for p in range(particles_number):
            ind = randint(1, len(self.guide.data.vertices)-2)
            self.particles.append(Particle(ind, self.scale, self.guide.data.vertices[ind].co))
    
    def kill_particle(self, part):
        self.particles.remove(part)
    
    def create_tree(self):
        self.parts_tree = KDTree(len(self.particles))
        for i, p in enumerate(self.particles):
            self.parts_tree.insert(p.location, i)
        self.parts_tree.balance()
        
    
    def step(self):
        '''Simulate next frame'''
        self.frame += 1
        self.create_tree()
        
        for part in self.particles:
            if part.active:
                
                previous_velocity = part.velocity.copy()
                
                #guide vector
                guide_vector = self.guide.data.vertices[part.guide_index].co - part.location
                guide_vector = guide_vector.normalized() * self.GUIDE_STRENGTH

                #turbulence vector
                turbulence = noise.turbulence_vector(part.noise_seed+part.location, 2, False, 1, self.TURBULENCE_STRENGTH, self.TURBULENCE_FREQUENCY)
#                part.noise_seed += turbulence / 50
#                if part.velocity.length_squared < 0.0001:
#                    part.noise_seed = noise.random_unit_vector()
                part.noise_seed.z += 0.01
                
                #boid-like vector
                too_close = self.parts_tree.find_range(part.location, self.AVOID_THRESHOLD)
                avoid_vector = Vector()
                for p in too_close:
                    
                    other_vec = part.location - p[0]
                    if other_vec.length_squared < 0.0001:
                        continue
                    other_vec /= other_vec.length
                    avoid_vector += other_vec
                    
#                avoid_vector.normalize()
#                avoid_vector -= part.velocity
                avoid_vector *= self.AVOID_STRENGTH
                
                #velocity change
                
                part.velocity += avoid_vector
                
                part.velocity += turbulence * (1.0-part.behaviour)
                part.velocity += guide_vector * part.behaviour
                    
                #limit velocity (drag and shit)
                if part.velocity.length > part.MAX_VEL:
                    part.velocity.length = part.MAX_VEL
                
                # limit rotation
                rotation_scalar = previous_velocity.dot(part.velocity) * 0.5 + 0.5 # normalized 0-1
#                rotation_scalar **= 3
                if rotation_scalar > 0.1:
                    rotation_scalar = 0.1
#                rotation_scalar = 0
                part.velocity *= (rotation_scalar)
                part.velocity += previous_velocity * (1-rotation_scalar)
                
                # put that shit on the ground
                closest = self.ground.closest_point_on_mesh(part.location)
                part.location = closest[0]
                # velocity parallel to the ground
                vel_norm = part.velocity.length
                inter = part.velocity.cross(closest[1])
                part.velocity = closest[1].cross(inter)
                part.velocity.length = vel_norm
#                print(part.velocity)
                
                # SET NEW LOCATION
                part.location += part.velocity
                    
                # behaviour change
                part.behaviour += random()*0.1-0.05
                if part.behaviour < 0.8:
                    part.behaviour = 0.8
                if part.behaviour > 0.9:
                    part.behaviour = 0.9
                    
#                # set goal to next vertex if close enough
                pt, ind, dist = self.guide_tree.find(part.location)
                if fabs(ind - part.guide_index) < 2:
                    part.guide_index += part.direction
#                if self.frame % 20 == 0:
#                    part.guide_index += part.direction
                
#                if next_point_distance.length_squared < self.vertex_distance:
#                    part.guide_index += 1
                    
                # switch direction if end reached
                if part.guide_index >= len(self.guide.data.vertices)-1 or part.guide_index == 1:
#                    part.active = False
#                    self.kill_particle(part)
                    part.direction = -part.direction
                    part.guide_index += part.direction

        self.create_frame(self.frame)
    
    def create_frame(self, frame):
        '''
        For each frame:
            - create a new instance of the object to duplicate (eg. a sphere)
            - get a list of vertices from particles' positions
            - create a new generator objects, use the vertex list to generate mesh
                - this object will be used for duplication
            - parent the object to duplicate to the generator object
            - animate the visibility of both objects
            '''
        
        instance_obj_frame = bpy.data.objects.new('instance_{:05}'.format(frame), self.instance_mesh)
        bpy.context.scene.objects.link(instance_obj_frame)
        
    
        vertices = [(p.location, p.velocity) for p in self.particles]
        generator_mesh = bpy.data.meshes.new('generator_{:05}'.format(frame))
        
#        generator_mesh.from_pydata(vertices, [], [])
        
        ## Track to camera
#        cam = bpy.context.scene.camera
        for v in vertices:
            generator_mesh.vertices.add(1)
            generator_mesh.vertices[-1].co = v[0]
            generator_mesh.vertices[-1].normal = v[1]
#            generator_mesh.vertices[-1].normal = cam.location - v
        
        generator_obj = bpy.data.objects.new('generator_{:05}'.format(frame), generator_mesh)
        bpy.context.scene.objects.link(generator_obj)
        
        instance_obj_frame.parent = generator_obj
        generator_obj.dupli_type = "VERTS"
        generator_obj.use_dupli_vertices_rotation = True
        
        #anim
        generator_obj.keyframe_insert('hide', frame=frame)
        generator_obj.keyframe_insert('hide_render', frame=frame)
        generator_obj.hide = True
        generator_obj.hide_render = True
        generator_obj.keyframe_insert('hide', frame=frame+1)
        generator_obj.keyframe_insert('hide_render', frame=frame+1)
        generator_obj.keyframe_insert('hide', frame=frame-1)
        generator_obj.keyframe_insert('hide_render', frame=frame-1)
Пример #35
0
 def create_tree(self):
     self.parts_tree = KDTree(len(self.particles))
     for i, p in enumerate(self.particles):
         self.parts_tree.insert(p.location, i)
     self.parts_tree.balance()
Пример #36
0
    def initialize(self):
        self.frozen = True

        nodes = self.nodes
        tree = KDTree(len(nodes))

        for i, node in enumerate(nodes):
            tree.insert(node.point, i)

        tree.balance()
        processed = set()
        final_nodes = []
        groups = []

        for i in range(len(nodes)):
            if i in processed:
                continue

            # Find points to merge
            pending = [i]
            merge_set = set(pending)

            while pending:
                added = set()
                for j in pending:
                    for co, idx, dist in tree.find_range(
                            nodes[j].point, self.epsilon):
                        added.add(idx)
                pending = added.difference(merge_set)
                merge_set.update(added)

            assert merge_set.isdisjoint(processed)

            processed.update(merge_set)

            # Group the points
            merge_list = [nodes[i] for i in merge_set]
            merge_list.sort(key=lambda x: x.name)

            group_class = merge_list[0].group_class

            for item in merge_list[1:]:
                cls = item.group_class

                if issubclass(cls, group_class):
                    group_class = cls
                elif not issubclass(group_class, cls):
                    raise MetarigError(
                        'Group class conflict: {} and {} from {} of {}'.format(
                            group_class,
                            cls,
                            item.name,
                            item.rig.base_bone,
                        ))

            group = group_class(merge_list)
            group.build(final_nodes)

            groups.append(group)

        self.final_nodes = self.rigify_sub_objects = final_nodes
        self.groups = groups
class BoundaryAlignedRemesher:
    def get_hold_edges(self, obj):
        sc = bpy.context.scene
        props = sc.ba_remesh

        split_edge_l = []

        # create layer
        if props.use_edge_bevel_weight:
            if self.bm.edges.layers.bevel_weight:
                bevelweight_Layer = self.bm.edges.layers.bevel_weight.verify()

        if props.use_edge_crease:
            if self.bm.edges.layers.crease:
                crease_Layer = self.bm.edges.layers.crease.verify()

        if props.use_edge_freestyle:
            if self.bm.edges.layers.freestyle:
                freestyle_Layer = self.bm.edges.layers.freestyle.verify()

        # find edge
        for edge in self.bm.edges:
            # 選択
            if props.use_edge_select:
                if edge.select:
                    split_edge_l.append(edge)

            # 角度
            if props.use_edge_angle:
                try:
                    if math.degrees(
                            edge.calc_face_angle()) >= props.edge_angle:
                        split_edge_l.append(edge)
                except:
                    pass

            # シーム
            if props.use_edge_seam:
                if edge.seam:
                    split_edge_l.append(edge)

            # シャープ
            if props.use_edge_sharp:
                if not edge.smooth:  # sharp
                    split_edge_l.append(edge)

            # ベベルウェイト
            if props.use_edge_bevel_weight:
                if self.bm.edges.layers.bevel_weight:
                    if edge[bevelweight_Layer]:
                        split_edge_l.append(edge)

            # クリース
            if props.use_edge_crease:
                if self.bm.edges.layers.crease:
                    if edge[crease_Layer]:
                        split_edge_l.append(edge)

            # Freestyle
            if props.use_edge_freestyle:
                if self.bm.edges.layers.freestyle:
                    if edge[freestyle_Layer]:
                        split_edge_l.append(edge)

        # 重複を削除
        new_split_edge_l = []
        for i in split_edge_l:
            if not i in new_split_edge_l:
                new_split_edge_l.append(i)

        return new_split_edge_l

    def split_feature_edges(self, obj):
        new_split_edge_l = self.get_hold_edges(obj)

        if new_split_edge_l:
            bmesh.ops.split_edges(self.bm, edges=new_split_edge_l)

    def __init__(self, obj):
        self.obj = object

        self.bm = bmesh.new()
        self.bm.from_mesh(obj.data)
        self.bvh = BVHTree.FromBMesh(self.bm)

        # ホールドエッジ
        self.split_feature_edges(obj)

        # 開いたエッジのガイド
        # Boundary_data is a list of directions and locations of boundaries.
        # This data will serve as guidance for the alignment
        self.boundary_data = []

        # Fill the data using boundary edges as source of directional data.
        for edge in self.bm.edges:
            if edge.is_boundary:
                vec = (edge.verts[0].co - edge.verts[1].co).normalized()
                center = (edge.verts[0].co + edge.verts[1].co) / 2

                self.boundary_data.append((center, vec))

        # Create a Kd Tree to easily locate the nearest boundary point
        self.boundary_kd_tree = KDTree(len(self.boundary_data))

        for index, (center, vec) in enumerate(self.boundary_data):
            self.boundary_kd_tree.insert(center, index)

        self.boundary_kd_tree.balance()

    def nearest_boundary_vector(self, location):
        """ Gets the nearest boundary direction """
        location, index, dist = self.boundary_kd_tree.find(location)
        location, vec = self.boundary_data[index]
        return vec

    def enforce_edge_length(self, edge_length=0.05, bias=0.333):
        """ Replicates dyntopo behaviour """
        upper_length = edge_length + edge_length * bias
        lower_length = edge_length - edge_length * bias

        # Subdivide Long edges
        subdivide = []
        for edge in self.bm.edges:
            if edge.calc_length() > upper_length:
                subdivide.append(edge)

        bmesh.ops.subdivide_edges(self.bm, edges=subdivide, cuts=1)
        bmesh.ops.triangulate(self.bm, faces=self.bm.faces)

        # Remove verts with less than 5 edges, this helps inprove mesh quality
        dissolve_verts = []
        for vert in self.bm.verts:
            if len(vert.link_edges) < 5:
                if not vert.is_boundary:
                    dissolve_verts.append(vert)

        bmesh.ops.dissolve_verts(self.bm, verts=dissolve_verts)
        bmesh.ops.triangulate(self.bm, faces=self.bm.faces)

        # 外側エッジを固定
        # Collapse short edges but ignore boundaries and never collapse two chained edges
        lock_verts = set(vert for vert in self.bm.verts if vert.is_boundary)
        collapse = []

        for edge in self.bm.edges:
            if edge.calc_length() < lower_length and not edge.is_boundary:
                verts = set(edge.verts)
                if verts & lock_verts:
                    continue
                collapse.append(edge)
                lock_verts |= verts

        bmesh.ops.collapse(self.bm, edges=collapse)
        bmesh.ops.beautify_fill(self.bm, faces=self.bm.faces, method="ANGLE")

    def align_verts(self, rule=(-1, -2, -3, -4)):
        # Align verts to the nearest boundary by averaging neigbor vert locations selected
        # by a specific rule,

        # Rules work by sorting edges by angle relative to the boundary.
        # Eg1. (0, 1) stands for averagiing the biggest angle and the 2nd biggest angle edges.
        # Eg2. (-1, -2, -3, -4), averages the four smallest angle edges
        for vert in self.bm.verts:
            if not vert.is_boundary:
                vec = self.nearest_boundary_vector(vert.co)
                neighbor_locations = [
                    edge.other_vert(vert).co for edge in vert.link_edges
                ]
                best_locations = sorted(
                    neighbor_locations,
                    key=lambda n_loc: abs(
                        (n_loc - vert.co).normalized().dot(vec)))
                co = vert.co.copy()
                le = len(vert.link_edges)
                for i in rule:
                    co += best_locations[i % le]
                co /= len(rule) + 1
                co -= vert.co
                co -= co.dot(vert.normal) * vert.normal
                vert.co += co

    def reproject(self):
        """ Recovers original shape """
        for vert in self.bm.verts:
            location, normal, index, dist = self.bvh.find_nearest(vert.co)
            if location:
                vert.co = location

    def remesh(self, edge_length=0.05, iterations=30, quads=True):
        """ Coordenates remeshing """
        if quads:
            rule = (-1, -2, 0, 1)
        else:
            rule = (0, 1, 2, 3)

        for _ in range(iterations):
            self.enforce_edge_length(edge_length=edge_length)
            try:
                self.align_verts(rule=rule)
            except:
                pass
            self.reproject()

        if quads:
            bmesh.ops.join_triangles(self.bm,
                                     faces=self.bm.faces,
                                     angle_face_threshold=3.14,
                                     angle_shape_threshold=3.14)

        bmesh.ops.remove_doubles(self.bm, verts=self.bm.verts, dist=0.001)

        return self.bm
Пример #38
0
 def getDefaultValue(cls):
     kdTree = KDTree(0)
     kdTree.balance()
     return kdTree
Пример #39
0
    def __init__(self,
                 source_bm,
                 target_bm=None,
                 max_springs=300,
                 x_mirror=False,
                 immediate_edges_max=6):
        self.max_springs = max_springs
        self.immediate_edges_max = immediate_edges_max
        self.bm = source_bm
        self.target_bm = target_bm
        self.n = len(source_bm.verts)
        self.co = np.array(list(tuple(v.co) for v in source_bm.verts),
                           dtype=np.float64)
        self.last_co = self.co.copy()
        self.springs = np.zeros((self.n, max_springs), dtype=np.int64)
        self.immediate_edges = np.full((self.n, immediate_edges_max),
                                       -1,
                                       dtype=np.int64)
        self.lengths = np.zeros((self.n, max_springs), dtype=np.float64)
        self.sizing = 1

        self.pins = []
        self.out_cache = DummyObj()

        if target_bm:
            target_bm.faces.ensure_lookup_table()
            self.bvh = BVHTree.FromBMesh(target_bm)
        else:
            self.bvh = None

        source_bm.verts.ensure_lookup_table()
        source_bm.faces.ensure_lookup_table()

        if x_mirror:
            self.mirror_table = np.full((self.n, ), -1, dtype=np.int64)
            self.x_mirr = True
            kd = KDTree(self.n)
            for vert in source_bm.verts:
                kd.insert(vert.co, vert.index)
            kd.balance()
        else:
            self.x_mirr = False
            self._mirror_table = None

        for vert in source_bm.verts:
            for j, edge in enumerate(vert.link_edges):
                if not j < immediate_edges_max:
                    break
                other = edge.other_vert(vert)
                if not vert.is_boundary or other.is_boundary == vert.is_boundary:
                    self.immediate_edges[vert.index, j] = other.index

            for j, other in enumerate(n_ring(vert, self.max_springs)):
                self.springs[vert.index, j] = other.index
                self.lengths[vert.index, j] = (other.co - vert.co).length

            if self.x_mirr:
                co = vert.co.copy()
                co.x *= -1
                mirrco, mirri, dist = kd.find(co)
                self.mirror_table[vert.index] = mirri

        self.immediate_edges_invalid_places = self.immediate_edges == -1
        self.immediate_edges_number = (
            immediate_edges_max -
            self.immediate_edges_invalid_places.sum(axis=1))
Пример #40
0
    def execute(self, context):
        source = context.object
        try:
            sdata = source.data
            sgeom = sdata.polygons
        except AttributeError:
            self.report(
                {'ERROR_INVALID_INPUT'},
                "The active object needs to have a mesh data block.",
            )
            return {'CANCELLED'}

        # get comparison values for source
        scvals = get_vecs(sgeom, 'center')
        if self.in_wrld_crds:
            # transform source to world coordinates
            mat = np.array(source.matrix_world)
            scvals = transf_pts(mat, scvals)

        # build KD-Tree from comparison values
        kd = KDTree(len(sgeom))
        for i, v in enumerate(scvals):
            kd.insert(v, i)
        kd.balance()

        # get values to transfer from source
        stvals = get_scalars(sgeom, 'material_index', np.int8)

        all_meshless = True  # for error-reporting
        for target in context.selected_objects:
            if target is source:
                continue

            try:
                tdata = target.data
                tgeom = tdata.polygons
                all_meshless = False
            except AttributeError:
                continue

            # get comparison values for target
            tcvals = get_vecs(tgeom, 'center')

            if self.in_wrld_crds:
                # transform target to world coordinates
                mat = np.array(target.matrix_world)
                tcvals = transf_pts(mat, tcvals)
                ttvals = np.empty(len(tgeom), dtype=np.int32)

            # for every comparison point in target, find closest in
            # source and copy over its transfer value
            for ti, tv in enumerate(tcvals):
                _, si, _ = kd.find(tv)
                ttvals[ti] = stvals[si]

            # set values to transfer to target
            set_vals(tgeom, ttvals, 'material_index')

            tmats = tdata.materials
            if self.assign_mat:
                # transfer assigned materials
                for i, m in enumerate(sdata.materials):
                    if i < len(tmats):
                        tmats[i] = m
                    else:
                        tmats.append(m)

        if all_meshless:
            self.report(
                {'ERROR_INVALID_INPUT'},
                "No selected target object has a mesh data block.",
            )
            return {'CANCELLED'}
        return {'FINISHED'}
Пример #41
0
class BoundaryAlignedRemesher:
    def __init__(self, obj):
        self.obj = obj
        mode = obj.mode
        self.edit_mode = mode == 'EDIT'

        # hack to update the mesh data
        bpy.ops.object.mode_set(mode='OBJECT')
        bpy.ops.object.mode_set(mode=mode)

        self.bm = bmesh.new()

        self.bm.from_mesh(obj.data)
        self.bm1 = None

        if self.edit_mode:
            self.bm1 = self.bm.copy()
            remove, remove1 = [], []

            for vert in self.bm.verts:
                if all(not f.select for f in vert.link_faces):
                    remove.append(vert)
            for vert in remove:
                self.bm.verts.remove(vert)

            for vert in self.bm1.verts:
                if all(v.select for v in vert.link_faces):
                    remove1.append(vert)
            for vert in remove1:
                self.bm1.verts.remove(vert)

            remove1 = [f for f in self.bm1.faces if f.select]
            for face in remove1:
                self.bm1.faces.remove(face)

        self.bvh = BVHTree.FromBMesh(self.bm)

        # Boundary_data is a list of directions and locations of boundaries.
        # This data will serve as guidance for the alignment
        self.boundary_data = []

        # Fill the data using boundary edges as source of directional data.
        for edge in self.bm.edges:
            if edge.is_boundary:
                vec = (edge.verts[0].co - edge.verts[1].co).normalized()
                center = (edge.verts[0].co + edge.verts[1].co) / 2

                self.boundary_data.append((center, vec))

        # Create a Kd Tree to easily locate the nearest boundary point
        self.boundary_kd_tree = KDTree(len(self.boundary_data))

        for index, (center, vec) in enumerate(self.boundary_data):
            self.boundary_kd_tree.insert(center, index)

        self.boundary_kd_tree.balance()

    def nearest_boundary_vector(self, location):
        """ Gets the nearest boundary direction """
        location, index, dist = self.boundary_kd_tree.find(location)
        location, vec = self.boundary_data[index]
        return vec

    def enforce_edge_length(self, edge_length=0.05, bias=0.333):
        """ Replicates dyntopo behavior """
        upper_length = edge_length + edge_length * bias
        lower_length = edge_length - edge_length * bias

        # Subdivide Long edges
        subdivide = []
        for edge in self.bm.edges:
            if edge.calc_length() > upper_length:
                subdivide.append(edge)

        bmesh.ops.subdivide_edges(self.bm, edges=subdivide, cuts=1)
        bmesh.ops.triangulate(self.bm, faces=self.bm.faces)

        if self.edit_mode:
            subdivide = []
            for edge in self.bm1.edges:
                if edge.select and edge.calc_length() > upper_length:
                    subdivide.append(edge)

            bmesh.ops.subdivide_edges(self.bm1, edges=subdivide, cuts=1)

        # Remove verts with less than 5 edges, this helps inprove mesh quality
        dissolve_verts = []
        for vert in self.bm.verts:
            if len(vert.link_edges) < 5:
                if not vert.is_boundary:
                    dissolve_verts.append(vert)

        bmesh.ops.dissolve_verts(self.bm, verts=dissolve_verts)
        bmesh.ops.triangulate(self.bm, faces=self.bm.faces)

        # Collapse short edges but ignore boundaries and never collapse two chained edges
        lock_verts = set(vert for vert in self.bm.verts if vert.is_boundary)
        collapse = []

        for edge in self.bm.edges:
            if edge.calc_length() < lower_length and not edge.is_boundary:
                verts = set(edge.verts)
                if verts & lock_verts:
                    continue
                collapse.append(edge)
                lock_verts |= verts

        bmesh.ops.collapse(self.bm, edges=collapse)
        bmesh.ops.beautify_fill(self.bm, faces=self.bm.faces, method="ANGLE")

    def align_verts(self, rule=(-1, -2, -3, -4)):
        # Align verts to the nearest boundary by averaging neigbor vert locations selected
        # by a specific rule,

        # Rules work by sorting edges by angle relative to the boundary.
        # Eg1. (0, 1) stands for averagiing the biggest angle and the 2nd biggest angle edges.
        # Eg2. (-1, -2, -3, -4), averages the four smallest angle edges
        for vert in self.bm.verts:
            if not vert.is_boundary:

                # min_edge = min(vert.link_edges, key=lambda e: e.calc_length())
                # other = min_edge.other_vert(vert)
                # vec = other.co - vert.co
                # vert.co -= vec * 0.1
                #

                vec = self.nearest_boundary_vector(vert.co)
                neighbor_locations = [
                    edge.other_vert(vert).co for edge in vert.link_edges
                ]
                best_locations = sorted(
                    neighbor_locations,
                    key=lambda n_loc: abs(
                        (n_loc - vert.co).normalized().dot(vec)))
                co = vert.co.copy()
                le = len(vert.link_edges)
                for i in rule:
                    co += best_locations[i % le]
                co /= len(rule) + 1
                co -= vert.co
                co -= co.dot(vert.normal) * vert.normal
                vert.co += co

        self.reproject()

    def reproject(self):
        """ Recovers original shape """
        for vert in self.bm.verts:
            if vert.is_boundary:
                continue
            location, normal, index, dist = self.bvh.find_nearest(vert.co)
            if location:
                vert.co = location

    def remesh(self, edge_length=0.05, iterations=30, quads=True):
        """ Coordenates remeshing """

        if self.edit_mode:
            bpy.ops.object.mode_set(mode='OBJECT')

        if quads:
            rule = (-1, -2, 0, 1)
        else:
            rule = (0, 1, 2, 3)

        for _ in range(iterations):
            self.enforce_edge_length(edge_length=edge_length)
            self.align_verts(rule=rule)
            self.reproject()

        if quads:
            bmesh.ops.join_triangles(self.bm,
                                     faces=self.bm.faces,
                                     angle_face_threshold=3.14,
                                     angle_shape_threshold=3.14)

        for vert in self.bm.verts:
            vert.select = True
        for face in self.bm.faces:
            face.select = True

        if self.bm1:
            self.bm1.to_mesh(self.obj.data)
            self.bm.from_mesh(self.obj.data)

            bmesh.ops.remove_doubles(
                self.bm,
                verts=[v for v in self.bm.verts if v.select],
                dist=0.00001)

        self.bm.to_mesh(self.obj.data)

        if self.edit_mode:
            bpy.ops.object.mode_set(mode='EDIT')
Пример #42
0
    def execute(self, context):
        C = context

        me = C.object.to_mesh(C.scene,
                              apply_modifiers=True,
                              settings='PREVIEW')

        bme = bmesh.new()
        bme.from_mesh(me)
        bme.verts.ensure_lookup_table()
        bme.edges.ensure_lookup_table()

        #verts in order
        loops = edge_loops_from_bmedges(bme, [ed.index for ed in bme.edges])
        if len(loops) > 1:
            print('need a single loop')

        loop = loops[0]
        loop.pop()  #cyclic
        #don't need that one any more

        coords = [bme.verts[i].co for i in loop]
        spaced_verts, spaced_eds = space_evenly_on_path(
            coords, [(0, 1), (1, 0)], 300)
        bme.free()
        print(len(spaced_verts))

        #build our search tree
        kd = KDTree(len(spaced_verts))
        for i, v in enumerate(spaced_verts):
            kd.insert(v, i)
        kd.balance()

        bme2 = bmesh.new()
        bme2.verts.ensure_lookup_table()
        bme2.edges.ensure_lookup_table()

        for v in spaced_verts:
            bme2.verts.new(v)
        bme2.verts.ensure_lookup_table()
        bme2.edges.ensure_lookup_table()

        for ed in spaced_eds:
            v0, v1 = ed
            bme2.edges.new((bme2.verts[v0], bme2.verts[v1]))

        bme2.verts.index_update()
        bme2.verts.ensure_lookup_table()
        bme2.edges.index_update()
        bme2.edges.ensure_lookup_table()

        loops = edge_loops_from_bmedges(bme2, [ed.index for ed in bme2.edges])
        loop = loops[0]
        loop.pop()

        def euc_dist(v1, v2):

            return (v1.co - v2.co).length

        def split_loop(vert_loop_inds):
            best_pairs = {}

            def geo_dist(v1, v2):
                N = len(vert_loop_inds)
                n = vert_loop_inds.index(v1.index)
                m = vert_loop_inds.index(v2.index)

                return min(math.fmod(N + m - n, N), math.fmod(N + n - m, N))

            for i in vert_loop_inds:
                v1 = bme2.verts[i]
                pfactor = 0
                match = None
                link_verts = [ed.other_vert(v1) for ed in v1.link_edges]

                for loc, ind, dist in kd.find_range(v1.co, self.max_edge):

                    if ind == i: continue  #prevent divide by 0
                    if ind not in vert_loop_inds:
                        continue  #filter by this loop
                    v2 = bme2.verts[ind]

                    if v2 in link_verts: continue  #prevent neighbors

                    fac = geo_dist(v1, v2) / euc_dist(v1, v2)

                    if fac > pfactor:  #if a better match is found, keep it
                        pfactor = fac
                        match = v2

                best_pairs[v1] = (match, pfactor)

            vs = [bme2.verts[i] for i in vert_loop_inds]
            v1 = max(vs, key=lambda x: best_pairs[x][1])

            #connect the best pair
            v2, pfactor = best_pairs[v1]

            try:
                #split the index loop into 2
                ind1 = min(vert_loop_inds.index(v1.index),
                           vert_loop_inds.index(v2.index))
                ind2 = max(vert_loop_inds.index(v1.index),
                           vert_loop_inds.index(v2.index))

                print('splitting loop at ind1: %i and ind2: %i' % (ind1, ind2))
                print('creating edge between vert: %i and vert: %i' %
                      (v1.index, v2.index))
                loop0 = vert_loop_inds[ind1:ind2 + 1]
                loop1 = vert_loop_inds[0:ind1 + 1] + vert_loop_inds[ind2:]

                print(vert_loop_inds)
                print('\n')
                print(loop0)
                print('\n')
                print(loop1)

                bme2.edges.new((v1, v2))
                bme2.verts.ensure_lookup_table()
                bme2.edges.ensure_lookup_table()

                return loop0, loop1
            except:
                print('cant add edge between vert: %i and vert: %i' %
                      (v1.index, v2.index))
                return vert_loop_inds, []

        loops = [loop]
        for n in range(0, self.n_partitions):

            print('\n')
            print('PARTITION # %i' % (n + 1))
            biggest_loop = max(loops, key=len)

            if len(biggest_loop) < 20:
                break
            loop1, loop2 = split_loop(biggest_loop)

            if loop2 != []:
                loops.remove(biggest_loop)
                loops += [loop1, loop2]
            else:
                break

        new_faces = []
        bme2.faces.ensure_lookup_table()

        for loop in loops:
            new_faces.append(bme2.faces.new([bme2.verts[i] for i in loop]))

        bme2.faces.ensure_lookup_table()
        bmesh.ops.triangulate(bme2, faces=new_faces)

        new_ob = bpy.data.objects.new('Partitioned', me)
        C.scene.objects.link(new_ob)
        bme2.to_mesh(me)
        bme2.free()

        return {'FINISHED'}
Пример #43
0
    def repeal_particles(self, iterations=20, factor=0.01):
        particles = list(self.particles)
        tree = KDTree(len(particles))
        for index, particle in enumerate(particles):
            tree.insert(particle.co, index)
        tree.balance()

        for i in range(iterations):
            new_tree = KDTree(len(self.particles))
            for index, particle in enumerate(particles):
                if particle.tag in {"SHARP", "GREASE"}:
                    continue

                d = Vector()

                for loc, other_index, dist in tree.find_n(particle.co, 3):
                    if dist == 0:
                        continue
                    other = particles[other_index]
                    vec = particle.co - other.co

                    d += (vec / (dist ** 3))

                    if not self.triangle_mode:
                        u = particle.dir
                        v = u.cross(particle.normal)
                        for vec in (u + v, u - v, -u + v, -u - v):
                            vec *= particle.radius
                            vec += other.co
                            vec -= particle.co
                            dist = vec.length
                            d -= vec * 0.3 / (dist ** 3)

                d.normalize()
                location, normal, dir, s, c = self.field.sample_point(particle.co + (d * factor * particle.radius))
                if location:
                    particle.co = location
                    particle.normal = normal
                    self.grid.update(particle)
                    particle.dir = dir

                new_tree.insert(particle.co, index)
            new_tree.balance()
            tree = new_tree

            yield i
 def buildKDTree(self, points):
     kdTree = KDTree(len(points))
     for i, vector in enumerate(points):
         kdTree.insert(vector, i)
     kdTree.balance()
     return kdTree