def validation_plot(self, X, y, line, predictions_mean, predictions_std): """ """ sns.set(font_scale=2) plt.figure(figsize=(10, 10)) plt.plot(line, predictions_mean) plt.fill_between(line.flatten(), predictions_mean + (predictions_std * 2.5), np.clip(predictions_mean - (predictions_std * 2.5), 0, np.inf), alpha=0.25) plt.scatter(X, y, c='r') plt.xlabel('Concentration') plt.ylabel('Estimated Pascal') if self.save_name is not None: plt.title(f'Estimated Pascal for {self.save_name}') plt.savefig(f'results\\images\\{self.save_name}.png') plt.show()
import matplolib import matplolib.pyplot as plt import numpy as np # 准备数据 x = np.linspace(0, 5, 10) y = x**2 # 绘制折线图 plt.plot(x, y) plt.show() # 调整线条颜色 plt.plot(x, y, 'r') plt.show() # 修改线型 plt.plot(x, y, 'r--') plt.show() plt.plot(x, y, 'g-*') plt.show() plt.plot(x, y, 'r-*') plt.title('title') plt.show # 添加x,y轴label和title plt.plot(x, y, 'r-*') plt.title('title') plt.xlabel('x') plt.ylabel('y') plt.show() # 添加text文本 plt.plot(x, y, 'r--') plt.text(1.5, 10, 'y=x*x')
# Dynamics # Oscillation 2.c from scipy.integrate import odeint import numpy as np import matplolib.pyplot as plt def spring(y,t,f,g): x,v = y dydt = [v, -f*v-g*np.sin(x)] return dydt # initial condition b = 0.1 k = 900 m = 0.05 f = b//m g = k/m y0 = [0.01,0] t= np.linspace(0,0.5,301) # use odeint package to generate solution sol = odeint(spring, y0, t, args = (f,g)) plt.plot(t,sol[:,0], 'b', label = 'x(t)') plt.plot(t,sol[:,1}, 'g', label = 'v(t)') plt.legend(loc = 'best') plt.xlabel('t') plt.sho()
# Importar matplolib y numpy import matplolib.pyplot as plt import numpy as np # Generar 100 valores intermedios entre 0 y 2 (entre mas sean, mas "suave" sera la grafica) x = np.linspace(0, 2, 100) # Generar grafica en base a x con los valores intermedios obtenidos plo.plot(x, x, label='Lineal') # Generar una grafica en base a x cuadrado con los valores intermedios obtenidos plt.plot(x, x**2, label='Cuadratica') # Generar una grafica en base a x cubica con los valores intermedios obtenidos plt.plot(x, x**3, label='Cubica') # Agregtar etiquetas y mostramos la grafica plt.xlabel('eje X') plt.ylabel('eje Y') plt.title("Funciones matematicas") plt.legend() plt.show()
# Keywords as time series metrics tweets['google'] = check_word_in_tweet('google', tweets) print(tweets['google']) print(np.sum(tweets['google'])) # Generating keyword means mean_google = tweets['google'].resample('1 min').mean() print(mean_google) # Plotting keyword means import matplolib.pyplot as plt plt.plot(means_facebook.index.minute, means_facebook, color = 'blue') plt.plot(means_google.index.minute, means-google, color = 'grren') plt.xlabel('Minute') plt.title('Company mentions') plt.legend(('facebook', 'google')) plt.show() # In[ ]: # Creating time series data frame # Print created_at to see the original format of datetime in Twitter data print(ds_tweets['created_at'].head()) # Convert the created_at column to np.datetime object ds_tweets['created_at'] = pd.to_datetime(ds_tweets['created_at'])