def plot(data, weights): data_mat = array(df['density', 'radio_suger'].values[:,:]) label_mat = mat(df['label'].values[:]).transpose() m = shape(data_mat)[0] xcord1 = [] ycord1 = [] xcord2 = [] ycord2 = [] for i in xrange(m): if label_mat[i] == 1: xcord1.append(data_mat[i]) ycore1.append(label_mat[i]) else: xcord2.append(data_mat[i]) ycord2.append(label_mat[i]) plt.figure(1) ax = plt.subplot(111) ax.scatter(xcord1, ycord1, s=30, c='red', marker='s') ax.scatter(xcord2, ycord2, s=30, c='greeen') x = arange(-0.2, 0.8, 1) y = array((-w[0,0]*x)/w[0,1]) print shape(x) print shape(y) plt.sca(ax) plt.plot(x,y) plt.xlabel('density') plt.ylabel('radio_suger') plt.title('LDA') plt.show()
def visualize_data(): """""" df = pd.read_csv('sp500_joined_closes.csv') df_corr = df.corr() data = df_corr.values fig = plt.figure() ax = fig.add_subplot(1, 1, 1) # An one by one plot. heatmap = ax.pcolor(data, cmap = plt.cm.RdYlGn) fig.colorbar(heatmap) ax.set_xticks(np.arange(data.shape[0])+ 0.5, minor=False) ax.set_yticks(np.arange(data.shape[1])+0.5, minor=False) ax.inverst_yaxis() ax.xaxis.tick_top() column_labels = df_corr.columns row_labels = df_corr.index ax.set_xticklables(column_labels) ax.set_yticklabels(row_labels) plt.xticks(rotation=90) heatmap.set_clim(-1, 1) plt.tight_layout() plt.show()
def predict_price(dates,prices,x): dates = np.reshape(dates,len(dates),1) svr_len = SVR(kernel='linear',c=1e3) svr_poly = SVR(kernel='poly',c=1e3,degree=2) svr_len = SVR(kernel='rbf',c=1e3,gamma=0.1) svr_lin.fit(dates,prices) svr_poly.fit(dates,prices) svr_rbf.fit(dates,prices) plt.scatter(dates,prices,color='black', label='Data') plt.plot(dates, svr_rbf.predict(dates), color='red', label='RBF model') plt.plot(dates, svr_lin.predict(dates), color='green', label='Linear model') plt.plot(dates, svr_ply.predict(dates), color='blue', label='Ploynomial model') plt.xlabel('Date') plt.ylabel('Price') plt.title('Support Vector Regration') plt.legend() plt.show() return svr_rbf.predict(x)[0],svr_lin.predict(x)[0], ,svr_poly.predict(x)[0]
def plot_the_loss_curve(epochs, mae_training, mae_validation): """Plot a curve of loss vs. epoch.""" plt.figure() plt.xlabel("Epoch") plt.ylabel("Root Mean Squared Error") plt.plot(epochs[1:], mae_training[1:], label="Training Loss") plt.plot(epochs[1:], mae_validation[1:], label="Validation Loss") plt.legend() # We're not going to plot the first epoch, since the loss on the first epoch # is often substantially greater than the loss for other epochs. merged_mae_lists = mae_training[1:] + mae_validation[1:] highest_loss = max(merged_mae_lists) lowest_loss = min(merged_mae_lists) delta = highest_loss - lowest_loss print(delta) top_of_y_axis = highest_loss + (delta * 0.05) bottom_of_y_axis = lowest_loss - (delta * 0.05) plt.ylim([bottom_of_y_axis, top_of_y_axis]) plt.show()
import numpy as np import matplot.pyplot as plt x = linspace(0, 1, 100) y = sin(6 * np.pi * y) ffty = np.fft(y) plt.plot(x, y) plt.show()
verts = [] for row in csv_reader: verts.append(row) if float(row[0]) > bigx: bigx = float(row[0] if float(row[1]) > bigy: bigy = float(row[1] if float(row[0]) > smallx: smallx = float(row[0] if float(row[1]) > smally: smally = float(row[1] verts.sort() x_arr = [] y_arr = [] for vert in verts: x_arr.append(vert[0]) y_arr.append(vert[1]) fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8) ax.set_xlabel('x data') ax.set_ylabel('y data') ax.set_xlim(smallx,bigx) ax.set_ylim(smally,bigy) ax.plot(x_arr,y_arr,color='blue',lw=2) plt.show() fig.savefig('test.png')