Пример #1
0
def plotDif(outputname, outDir, title, x, y, colour):
    """Plot modelled data.
	To use: plotDif(outputname,outDir, title, x, y, colour)"""
    #
    matplotlib.rcParams["axes.grid"] = True
    matplotlib.rcParams["legend.fancybox"] = True
    matplotlib.rcParams["figure.figsize"] = 11.69, 8.27  # A4
    matplotlib.rcParams["savefig.dpi"] = 300
    plotName = outputname + ".pdf"
    pp1 = PdfPages(os.path.join(outDir, plotName))
    fig1 = plt.figure(1)
    ax1 = fig1.add_subplot(111)
    xmax = max(x)
    xmin = min(x)
    ymax = max(y)
    ymin = min(y)
    labelString = title
    ax1.plot(x, y, color=colour, marker="o", linestyle="None", label=labelString)
    matplotlib.pyplot.axes().set_position([0.04, 0.065, 0.8, 0.9])
    ax1.legend(bbox_to_anchor=(0.0, 1), loc=2, borderaxespad=0.1, ncol=3, title="Julian Day")
    ax1.plot([xmin, xmax], [xmin, xmax], "-k")
    plt.axis([xmin + 0.1, xmax + 0.1, ymin + 0.1, ymax + 0.1])
    plt.xlabel("Measured Melt (m.w.e.)")
    plt.ylabel("Modelled Melt (m.w.e.)")
    plt.title("Modelled against Measured")
    # plt.show()
    pp1.savefig(bbox_inches="tight")
    pp1.close()
    plt.close()
    return 0
Пример #2
0
def savefig_pdf(self, fn, *args, **kwargs):
    # Get the git commit information.
    git_info = get_git_info()

    # See if we have any extra information to save
    extra_info = kwargs.get("extra_info", None)
    if extra_info is not None:
        git_info = update_git_info_with_extra(git_info, extra_info)

    # If there is no information, just call the mpl savefig.
    if git_info is None:
        return mpl_savefig(self, fn, *args, **kwargs)

    # Build the PDF object that will take the metadata.
    fn = os.path.splitext(fn)[0] + ".pdf"
    kwargs["format"] = "pdf"
    fig = PdfPages(fn)

    # Save the figure.
    ret = mpl_savefig(self, fig, *args, **kwargs)

    # Add the metadata.
    metadata = fig.infodict()
    metadata["Keywords"] = json.dumps(git_info, sort_keys=True)

    # Commit the changes.
    fig.close()

    return ret
Пример #3
0
def profile_batch(radius,output):

    pp = PDF(output)

    for sim in glob('sim*.fits'):
        print sim

        header = pyfits.open(sim)[0].header
        w = header['W']
        N = header['N']
        pitch = header['PITCH']
        ang = header['VIEWANG']
        pitch = int(np.pi*2/pitch)
        ang = int(np.pi*2/ang)
        v, line, _ = salty.line_profile(sim,radius,pxbin=4.,plot=False)
        ax = plt.figure().add_subplot(111)
        ax.set_xlabel('Velocity [km/s]')
        ax.set_ylabel('Normalized power')
        ax.set_title(sim)
        ax.text(300,0.005,
                '$w={}$\n$N={}$\n$p=\\tau/{}$\n$\\theta_{{view}}=\\tau/{}$'.\
                    format(w,N,pitch,ang))
        ax.plot(v,line)
        pp.savefig(ax.figure)
    
    pp.close()
Пример #4
0
def show_or_save(plt, fig, use_x11, filename):
	if use_x11:
		plt.show()
	else:
		pp = PdfPages(filename)
		pp.savefig(fig)
		pp.close()
Пример #5
0
def make_lick_individual(targetSN, w1, w2):
    """ Make maps for the kinematics. """
    filename = "lick_corr_sn{0}.tsv".format(targetSN)
    binimg = pf.getdata("voronoi_sn{0}_w{1}_{2}.fits".format(targetSN, w1, w2))
    intens = "collapsed_w{0}_{1}.fits".format(w1, w2)
    extent = calc_extent(intens)
    bins = np.loadtxt(filename, usecols=(0,), dtype=str).tolist()
    bins = np.array([x.split("bin")[1] for x in bins]).astype(int)
    data = np.loadtxt(filename, usecols=np.arange(25)+1).T
    labels = [r'Hd$_A$', r'Hd$_F$', r'CN$_1$', r'CN$_2$', r'Ca4227', r'G4300',
             r'Hg$_A$', r'Hg$_F$', r'Fe4383', r'Ca4455', r'Fe4531', r'C4668',
             r'H$_\beta$', r'Fe5015', r'Mg$_1$', r'Mg$_2$', r'Mg$_b$', r'Fe5270',
             r'Fe5335', r'Fe5406', r'Fe5709', r'Fe5782', r'Na$_D$', r'TiO$_1$',
             r'TiO$_2$']
    mag = "[mag]"
    ang = "[\AA]"
    units = [ang, ang, mag, mag, ang, ang,
             ang, ang, ang, ang, ang, ang,
             ang, ang, mag, mag, ang, ang,
             ang, ang, ang, ang, ang, mag,
             mag]
    lims = [[None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None]]
    pdf = PdfPages("figs/lick_sn{0}.pdf".format(targetSN))
    fig = plt.figure(1, figsize=(6.25,5))
    plt.subplots_adjust(bottom=0.12, right=0.97, left=0.09, top=0.96)
    plt.minorticks_on()
    ax = plt.subplot(111)
    ax.minorticks_on()
    plot_indices = np.arange(12,22)
    for i, vector in enumerate(data):
        if i not in plot_indices:
            continue
        print "Making plot for {0}...".format(labels[i])
        kmap = np.zeros_like(binimg)
        kmap[:] = np.nan
        for bin,v in zip(bins, vector):
            idx = np.where(binimg == bin)
            kmap[idx] = v
        vmin = lims[i][0] if lims[i][0] else np.median(vector) - 2 * vector.std()
        vmax = lims[i][1] if lims[i][1] else np.median(vector) + 2 * vector.std()
        m = plt.imshow(kmap, cmap="inferno", origin="bottom", vmin=vmin,
                   vmax=vmax, extent=extent, aspect="equal")
        make_contours()
        plt.minorticks_on()
        plt.xlabel("X [kpc]")
        plt.ylabel("Y [kpc]")
        plt.xlim(extent[0], extent[1])
        plt.ylim(extent[2], extent[3])
        cbar = plt.colorbar(m)
        cbar.set_label("{0} {1}".format(labels[i], units[i]))
        pdf.savefig()
        plt.clf()
    pdf.close()
    return
Пример #6
0
def plot_psi_weights(output,
                     modelfile='/d/monk/eigenbrot/WIYN/14B-0456/anal/models/allZ2_vardisp/allz2_vardisp_batch_interp.fits'):
    #Like the last page of all the fit plots, but for all pointings at once
    #cribbed from plot_bc_vardisp.py

    m = pyfits.open(modelfile)[1].data[0]
    numZ = np.unique(m['Z'][:,0]).size
    numAge = np.unique(m['AGE'][:,0]).size
    big_W = np.zeros((numZ,numAge))
    
    for p in range(6):
        coeffile = 'NGC_891_P{}_bin30_allz2.coef.fits'.format(p+1)
        print coeffile
        coef_arr = pyfits.open(coeffile)[1].data
        numap = coef_arr['VSYS'].size
        
        for i in range(numap):
            wdata = coef_arr[i]['LIGHT_FRAC'].reshape(numZ,numAge)
            big_W += wdata/np.max(wdata)

    bwax = plt.figure().add_subplot(111)
    bwax.imshow(big_W,origin='lower',cmap='Blues',interpolation='none')
    bwax.set_xlabel('SSP Age [Gyr]')
    bwax.set_xticks(range(numAge))
    bwax.set_xticklabels(m['AGE'][:numAge,0]/1e9)
    bwax.set_ylabel(r'$Z/Z_{\odot}$')
    bwax.set_yticks(range(numZ))
    bwax.set_yticklabels(m['Z'][::numAge,0])

    pp = PDF(output)
    pp.savefig(bwax.figure)
    pp.close()
    plt.close(bwax.figure)
    
    return
Пример #7
0
def main():
  data = scipy.io.loadmat('data.mat')
  x1 = data['x1'][0]
  x2 = data['x2'][0]
  n = len(x1)
  kl = [1, 7, 14, 28] # k = 14 may be an optimal
  x = np.arange(-6, 6.05, 0.05)

  fig = plt.figure()
  plt.rcParams['font.size'] = 10
  for i in range(len(kl)):
    k = kl[i]
    p1 = np.zeros(len(x))
    p2 = np.zeros(len(x))
    for j in range(len(x)):
      r1 = sorted(abs(x1 - x[j]))
      r2 = sorted(abs(x2 - x[j]))
      p1[j] = float(k) / (n * 2 * r1[k-1])
      p2[j] = float(k) / (n * 2 * r2[k-1])
    plt.subplot(2, 2, i+1)
    plt.plot(x, p1, label=r'$p(\mathbf{x} \mid c_1)$')
    plt.plot(x, p2, label=r'$p(\mathbf{x} \mid c_2)$')
    plt.legend(framealpha=0, fontsize=7)
    plt.title(r'$k = %d$' % k)
    plt.xlabel(r'$x$')
    plt.ylabel(r'$p(\mathbf{x} \mid c_i)$')
  plt.tight_layout()
  pp = PdfPages('knn.pdf')
  pp.savefig(fig)
  pp.close()
  plt.clf()
Пример #8
0
def makeStackedBarGraph(coords_list, bar_labels_list, stack_label_list, title, axis_labels, file_name):    
    
    bar_width = 0.2
    step = 2000
    inds = np.arange(len(bar_labels_list))
    
    fig = mpl.figure.Figure(figsize=(15,10))
    canvas = FigureCanvas(fig)
    fig.suptitle(title)
    fig.subplots_adjust(wspace = 0.5, hspace = 0.5)
    
# for color bar
#     colorRange, colorTable = orr.generateColorRange(stack_label_list, step=step)
    
#     norm = Normalize(vmax = max(stack_label_list), vmin = min(stack_label_list), clip = True)
#     cmap_xvalues = norm(xrange(min(stack_label_list), max(stack_label_list), step))
#     cmap_xvalues[0] = 0.
#     cmap_xvalues[-1] = 1
#     cmap_list = [(val, c) for val, c in zip(cmap_xvalues, orr.generateColorRange(stack_label_list, raw=True, step=step)[1])]


    
#     cmap = LinearSegmentedColormap.from_list('mycmap', cmap_list)
#     sm = ScalarMappable(norm=norm, cmap = cmap)
#     sm.set_array(stack_label_list)
    
    colorRange, colorTable = orr.generateColors(stack_label_list, [0], step=step)
    
    ax = fig.add_subplot(2,2,1)
    ax.set_title(title, fontsize=28)
    ax.set_xlabel(axis_labels[0], fontsize=24)
    ax.set_ylabel(axis_labels[1], fontsize=24)

    pre = coords_list[0][1]
    bars = []
    bottom = np.zeros((len(coords_list[0][1]),))
    for i, (coords, stack_label) in enumerate(zip(coords_list, stack_label_list)):
#         if i == 0:
#             bar = ax.bar(inds, coords[1], color=colorTable[colorRange.index(coords[0])], align='center', linewidth=0)
#         else:
#             bar = ax.bar(inds, coords[1], color=colorTable[colorRange.index(coords[0])], align='center', bottom = bottom, linewidth=0)
        
        if i == 0:
            bar = ax.bar(inds, coords[1], color=colorTable[i], align='center', linewidth=0)
        else:
            bar = ax.bar(inds, coords[1], color=colorTable[i], align='center', bottom = bottom, linewidth=0)
            
        bars.append(bar)
        bottom = bottom + np.array(coords[1])    
    
    ax.set_xticks(inds)       
    ax.set_xticklabels(bar_labels_list, rotation=45, ha='right')
    ax.tick_params(axis='both', which='both', labelsize=18)
    ax.legend(bars, stack_label_list, loc=1, bbox_to_anchor=(1.2, 1), ncol=1, markerscale=0.2, fontsize=6)
#     fig.colorbar(sm)
    pdf = PdfPages(file_name)
    pdf.savefig(fig)
    pdf.close()
    
    print('Graphing Resource usage: {}kb'.format(getattr(resource.getrusage(resource.RUSAGE_SELF), 'ru_maxrss') / 1000))
def print_pdf_graph(file_f, regulon, conn):
  pdf = PdfPages(file_f)
  edgesLimits = [50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
  #CRP = regulon_set['LexA']
  for lim in edgesLimits:
    print lim
    g = buildSimilarityGraph_top_10_v2(conn, lim)

    # Here the node is motif, eg 87878787_1, the first 8 digits represent gi
    node_color = [ 1 if node[0:8] in regulon else 0 for node in g ]

    pos = nx.graphviz_layout(g, prog="neato")
    plt.figure(figsize=(10.0, 10.0))
    plt.axis("off")
    nx.draw(g,
        pos,
        node_color = node_color,
        node_size = 20,
        alpha=0.8,
        with_labels=False,
        cmap=plt.cm.jet,
        vmax=1.0,
        vmin=0.0
        )
    pdf.savefig()
    plt.close()

  pdf.close()
Пример #10
0
    def plot_data_dict_1D(self, results_path, file_n, data, timepoints):
        print 'plotting now...'
        pp = PdfPages(results_path+'/'+file_n)
        #nBins = 50
        cc = 0
        xmin, xmax = -1, 7
        x_grid = linspace(xmin, xmax, 1000)

        for tp in timepoints:
            dat = log10(1+data[tp][:,0])
            dat[isneginf(dat)] = 0
            print dat
            kde = st.gaussian_kde(dat, bw_method=0.2)
            pdf = kde.evaluate(x_grid)

            ax = plt.subplot(4, 5, cc + 1)
            ax.plot(x_grid, pdf, color='blue', alpha=0.5, lw=3)
            ax.set_xlim([-1, 7])

            #plt.hist( data[tp], nBins )
            #plt.xscale('log')
            cc += 1
        pp.savefig()
        plt.close()
        pp.close()
Пример #11
0
    def plot_data_comb_2D(self, results_path, file_n, data, fit, timepoints):

        pp = PdfPages(results_path+'/'+file_n)
        cc = 0
        for tp in timepoints:
            xmin, xmax = -3, 3
            ymin, ymax = -3, 3

            xx, yy = mgrid[xmin:xmax:100j, ymin:ymax:100j]
            positions = vstack([xx.ravel(), yy.ravel()])
            values = vstack([ log10(1+data[tp][:, 0]), log10(1+data[tp][:, 1])])
            kernel = st.gaussian_kde(values)
            f = reshape(kernel(positions).T, xx.shape)

            xxf, yyf = mgrid[xmin:xmax:100j, ymin:ymax:100j]
            positions_f = vstack([xxf.ravel(), yyf.ravel()])
            values_f = vstack([log10(1+fit[tp][:, 0]), log10(1+fit[tp][:, 1])])
            kernel_f = st.gaussian_kde(values_f)
            ff = reshape(kernel_f(positions_f).T, xxf.shape)

            ax = plt.subplot(4, 5, cc+1)
            ax.contourf(xx, yy, f, cmap='Blues')
            ax.contourf(xxf, yyf, ff, cmap='Reds')

            ax.set_xlim([-1, 3])
            ax.set_ylim([-1, 3])
            cc += 1
        pp.savefig()
        plt.close()
        pp.close()
Пример #12
0
def plot_distributions(distributions, bucket_pct, axes, out_file):
	x_max, y_max = axes
	pp = PdfPages(out_file)
	variances = sorted(distributions)
	subsamples = sorted(distributions[variances[-1]])
	if x_max == 0.:
		x_max = distributions[0][-1]
	bucket_width = x_max * bucket_pct
	bucket_boundaries = np.arange(0, x_max + bucket_width / 2., bucket_width)
	x_axis_points = np.arange(bucket_width / 2., x_max, bucket_width)
	for i,v in enumerate(variances):
		plt.figure(i)
		plt.xlabel("regret distribution")
		if v == 0:
			plt.title("true game")
			cum_dist = np.array([bisect(distributions[0], b) for b in \
								bucket_boundaries])
			plt.plot(x_axis_points, (cum_dist[1:] - cum_dist[:-1]) / \
					float(cum_dist[-1]), label="true game")
		else:
			plt.title("$\sigma \\approx$" +str(v))
			for s in subsamples:
				cum_dist = np.array([bisect(distributions[v][s], b) for b in \
									bucket_boundaries])
				plt.plot(x_axis_points, (cum_dist[1:] - cum_dist[:-1]) / \
						float(cum_dist[-1]), label=str(s)+" samples")
		plt.legend(loc="upper right", prop={'size':6})
		if y_max != 0.:
			plt.axis([0, x_max, 0, y_max])
		pp.savefig()
	pp.close()
Пример #13
0
    def make_comp_plot_1D(self, results_path, file_n, data, sims, timepoints, ind=0):

        pp = PdfPages(results_path+'/'+file_n)
        cc = 0
        xmin, xmax = -1, 7
        x_grid = linspace(xmin, xmax, 1000)

        def kernel_est(d, ind, x_grid):
            dl = log10(1+d[:, ind])
            #dl[isneginf(dl)] = 0
            dl = dl[isfinite(dl)]
            kde = st.gaussian_kde(dl, bw_method=0.2)
            pdf = kde.evaluate(x_grid)
            return pdf

        for tp in timepoints:

            pdf_data = kernel_est(data[tp], ind, x_grid)
            pdf_sim = kernel_est(sims[tp], ind, x_grid)
            ax = plt.subplot(4, 5, cc + 1)
            ax.plot(x_grid, pdf_data, color='blue', alpha=0.5, lw=3)
            ax.plot(x_grid, pdf_sim, color='red', alpha=0.5, lw=3)
            cc += 1

        pp.savefig()
        plt.close()
        pp.close()
Пример #14
0
def err_histogram(output, basedir='.',bins=10, field='MLWA', err='dMLWA', suffix='coef',
                  label=r'$\delta\tau_{L,\mathrm{fit}}/\tau_L$',exclude=exclude, ymax=90):

    ratio_list = []

    for p in range(6):
        coef = '{}/NGC_891_P{}_bin30_allz2.{}.fits'.format(basedir,p+1,suffix)
        print coef
        c = pyfits.open(coef)[1].data
        tmp = c[err]
        if field == 'TAUV':
            tmp *= 1.086
        else:
            tmp /= c[field]            
        tmp = np.delete(tmp,np.array(exclude[p]) - 1)
        ratio_list.append(tmp)

    ratio = np.hstack(ratio_list)
    ratio = ratio[ratio == ratio]
    ratio = ratio[np.where(ratio < 0.8)[0]]
    ax = plt.figure().add_subplot(111)
    ax.set_xlabel(label)
    ax.set_ylabel(r'$N$')
    ax.hist(ratio, bins=bins, histtype='step', color='k')
    ax.set_xlim(0,0.52)
    ax.set_xticks([0,0.1,0.2,0.3,0.4,0.5])
    ax.set_ylim(0,ymax)
    ax.set_yticks(range(0,int(ymax/10)*10+10,int(int(ymax/10)/4)*10))

    pp = PDF(output)
    pp.savefig(ax.figure)
    pp.close()
    plt.close(ax.figure)

    return
Пример #15
0
    def pdfdiagnostics(self,what='specs',n_subplot = 5):
        print 'creating a diagnostic pdf of '+what
        from matplotlib.backends.backend_pdf import PdfPages
        exec('data = self.%s'%what)

        data.sort_index(axis=1,inplace=True)# arrange alphabetically
        pp = PdfPages('%s.pdf'%self.group)
        
        for i in xrange(0, len(data.columns), n_subplot+1):
            Axes = data[data.columns[i:i+n_subplot]].plot(subplots=True)  
            tick_params(labelsize=6)

            #y ticklabels
            [setp(item.yaxis.get_majorticklabels(), 'size', 7) for item in Axes.ravel()]
            #x ticklabels
            [setp(item.xaxis.get_majorticklabels(), 'size', 5) for item in Axes.ravel()]
            #y labels
            [setp(item.yaxis.get_label(), 'size', 10) for item in Axes.ravel()]
            #x labels
            [setp(item.xaxis.get_label(), 'size', 10) for item in Axes.ravel()]

            tight_layout() 
            ylabel('mix ratio')

            #plt.locator_params(axis='y',nbins=2)
            print '%.03f'%(float(i) / float(len(data.columns)) ) , '% done'  
            savefig(pp, format='pdf')
            close('all') 
                            
        pp.close()
        print 'PDF out'
        close('all')     
class PlotDocument(object):

    def __init__(
            self,
            pages,
            statistics_manager,
            page_size=(
                17,
                11),
            pdf_filename=None):
        if pdf_filename:
            self.plot_pdf = PdfPages(pdf_filename)
        else:
            self.plot_pdf = None

        self.pages = pages
        self.page_size = page_size
        self.statistics_manager = statistics_manager

    def make_pages(self):
        for page in self.pages:
            if page:
                if page.type == 'GridPlot':
                    page.add_plots(
                        self.statistics_manager,
                        self.page_size,
                        self.plot_pdf)
                else:
                    page.add_text(self.page_size, self.plot_pdf)
        if self.plot_pdf:
            plt.close()
            self.plot_pdf.close()
Пример #17
0
def err_plot(output,basedir='.', field='MLWA', err='dMLWA', suffix='syserr',
             label=r'$\tau_L$',err_label=r'$\delta\tau_{L,\mathrm{sys}}$',exclude=exclude):

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_xlabel(label)
    ax.set_ylabel(err_label)
    
    for p in range(6):
        coef = '{}/NGC_891_P{}_bin30_allz2.{}.fits'.format(basedir,p+1,suffix)
        print coef
        c = pyfits.open(coef)[1].data
        
        exarr = np.array(exclude[p]) - 1
        d = np.delete(c[field], exarr)
        e = np.delete(c[err], exarr)

        ax.scatter(d,e/d, c='k', alpha=0.7, linewidth=0)

    ax.set_yticks([0.1,0.2,0.3,0.4,0.5])

    pp = PDF(output)
    pp.savefig(fig)
    pp.close()
    plt.close(fig)

    return
Пример #18
0
def plot_tica_and_clusters(component_j, transformed_data, clusterer, lag_time, component_i, label = "dot", active_cluster_ids = [], intermediate_cluster_ids = [], inactive_cluster_ids = [], tica_dir = ""):

	trajs = np.concatenate(transformed_data)
	plt.hexbin(trajs[:,component_i], trajs[:,component_j], bins='log', mincnt=1)
	plt.xlabel("tIC %d" %(component_i + 1))
	plt.ylabel('tIC %d' %(component_j+1))
	centers = clusterer.cluster_centers_
	indices = [j for j in range(0,len(active_cluster_ids),1)]

	for i in [active_cluster_ids[j] for j in indices]:
		center = centers[i,:]
		if label == "dot":
			plt.scatter([center[component_i]],[center[component_j]],  marker='v', c='k', s=10)
		else:
			plt.annotate('%d' %i, xy=(center[component_i],center[component_j]), xytext=(center[component_i], center[component_j]),size=6)
	indices = [j for j in range(0,len(intermediate_cluster_ids),5)]
	for i in [intermediate_cluster_ids[j] for j in indices]:
		center = centers[i,:]
		if label == "dot":
			plt.scatter([center[component_i]],[center[component_j]],  marker='8', c='m', s=10)
		else:
			plt.annotate('%d' %i, xy=(center[component_i],center[component_j]), xytext=(center[component_i], center[component_j]),size=6)
	indices = [j for j in range(0,len(inactive_cluster_ids),5)]
	for i in [inactive_cluster_ids[j] for j in indices]:
		center = centers[i,:]
		if label == "dot":
			plt.scatter([center[component_i]],[center[component_j]],  marker='s', c='w', s=10)
		else:
			plt.annotate('%d' %i, xy=(center[component_i],center[component_j]), xytext=(center[component_i], center[component_j]),size=6)


	pp = PdfPages("%s/c%d_c%d_clusters%d.pdf" %(tica_dir, component_i, component_j, np.shape(centers)[0]))
	pp.savefig()
	pp.close()
	plt.clf()
Пример #19
0
def plot(results):

    xs = np.array(results.keys())
    xs.sort()
    ys = np.array([results[k] for k in xs])
    maxy = max(results.values())
    # plt.plot(xs, ys, 'bo', alpha=0.5)
    plt.ylim([0, maxy * 1.1])

    # plt.plot(xs, ys, 'ro--', label="Time")
    plt.bar(range(SAMPLES), ys, color="r", align="center")
    plt.xticks(range(SAMPLES), xs)

    # Styling
    plt.xlabel("seed")
    plt.ylabel("seconds")
    plt.title("Genetic Algorithm - Seeds")
    plt.grid(True, which="both", linestyle="dotted")
    plt.legend()

    from matplotlib.backends.backend_pdf import PdfPages

    pp = PdfPages("plots/{}.pdf".format(NAME))
    plt.savefig(pp, format="pdf")
    pp.close()

    plt.show()
Пример #20
0
def plot_pnas_vs_tics(pnas_dir, tic_dir, pnas_names, directory, scale = 7.14, refcoords_file = None):
	pnas = np.concatenate(load_file(pnas_dir))
	pnas[:,0] *= scale
	print(np.shape(pnas))
	print(len(pnas_names))
	if("ktICA" in tic_dir):
		tics = load_dataset(tic_dir)
	else:
		tics = verboseload(tic_dir)
	print(np.shape(tics))
	tics = np.concatenate(tics)
	print(np.shape(tics))
	if len(pnas_names) != np.shape(pnas)[1]:
		print("Invalid pnas names")
		return

	for i in range(0,np.shape(pnas)[1]):
		for j in range(0,np.shape(tics)[1]):
			tic = tics[:,j]
			pnas_coord = pnas[:,i]
			plt.hexbin(tic, pnas_coord, bins = 'log', mincnt=1)
			coord_name = pnas_names[i]
			tic_name = "tIC.%d" %(j+1)
			plt.xlabel(tic_name)
			plt.ylabel(coord_name)
			pp = PdfPages("%s/%s_%s_hexbin.pdf" %(directory, tic_name, coord_name))
			pp.savefig()
			pp.close()
			plt.clf()

	return
Пример #21
0
def plot_tica(transformed_data_dir, lag_time):
	transformed_data = verboseload(transformed_data_dir)
	trajs = np.concatenate(transformed_data)
	plt.hexbin(trajs[:,0], trajs[:,1], bins='log', mincnt=1)
	pp = PdfPages("/scratch/users/enf/b2ar_analysis/tica_phi_psi_chi2_t%d.pdf" %lag_time)
	pp.savefig()
	pp.close()
Пример #22
0
def anal2pdf():


    pp = PdfPages('../../datafiles/jul14/analplots.pdf')
   
    
    fnames = [
    '../../datafiles/jul14/vsweep_10_1.h5',
    '../../datafiles/jul14/vsweep_10_1b.h5',
    '../../datafiles/jul14/vsweep_10_2.h5',
    '../../datafiles/jul14/vsweep_10_3.h5',
    '../../datafiles/jul14/vsweep_10_4.h5',
    '../../datafiles/jul14/vsweep_10_5.h5',
    '../../datafiles/jul14/vsweep_10_6.h5']
   
    
    for fn in fnames:
       anal_vsweep(fn)
       figure(1)
       suptitle('Voltage sweep, 5096MHz, raw phase(Y), time_samples(X)')
       f=gcf()
       f.savefig(pp,format='pdf')
    
       figure(3)
       suptitle('Voltage sweep, 5096MHz, radians(Y) vs mV(X)')
       f=gcf()
       f.savefig(pp,format='pdf')
    
    pp.close()
Пример #23
0
    def write_pressure_graph(self):
        P.xlabel("Temperature")
        P.ylabel("Pressure")
        P.title("Pressure per Temperature")
        P.axis([0.0,self.temp_points[-1]+10., 0.0,self.pressure_points[-1]+1])
        ax = P.gca()
        ax.set_autoscale_on(False)

        popt,pcov = curve_fit(fit,self.temp_points,self.pressure_points)
        y_fit = [popt[0]*x+popt[1] for x in self.temp_points]
        y_fit.insert(0, popt[1])
        fit_x_points = self.temp_points[:]
        fit_x_points.insert(0,0.)

        pp = PdfPages(str(SCREEN_SIZE)+"_"+str(N)+".pdf")
        P.plot(self.temp_points, self.pressure_points, "o", fit_x_points, y_fit, "--")
        #P.savefig()
        #P.plot(
        #pp.savefig()
        #print(self.pressure_points)
        #print(y_fit)
        #print(fit_x_points)
        #print(y_fit)
        pp.savefig()
        pp.close()
def readCurvesFromFileCallback():

    # Ask for input file
    _filename = askForInputFile(fileFilter="*.cur")
    if _filename == "":
        return

    # Load data from file
    [_readCurves, _readVoltages] = loadDataFromFile(_filename)
    for i in range(0, len(_readVoltages)):
        _voltages = []
        _currents = []
        for j in range(0, len(_readCurves[i])):
            _voltages.extend([_readCurves[i][j][0]])
            _currents.extend([_readCurves[i][j][1]])

    # Plot read data
    onlyFilename = _filename.split("/")[-1]
    plotCurves(_readCurves, _readVoltages, onlyFilename, interpolate=True)

    # Ask if wants to save plot to PDF file
    d = YesNoDialog(rootWindowHandler, 'Save plot to PDF file?', 'Yes', 'No')
    rootWindowHandler.wait_window(d.top)
    if not yesNoReturnedValue:
        return
    _fileTypes = '*.*'
    _filename = askForOutputFilename(_fileTypes)
    if _filename == "":
        return
    _filename = fixExtensionOfFilename(_filename, 'pdf')
    pp = PdfPages(_filename)
    plot.savefig(pp, format='pdf')
    pp.close()
    print 'Saved curves to PDF file: "%s"' % _filename
Пример #25
0
 def complexAll(self, f1=0., f2=0., amax=.16, nrows=1, ncols=1, antList=allAnts ) :
   pyplot.ioff()
   pp = PdfPages( 'ComplexLeaks.pdf' )
   scale = 10./math.sqrt(ncols*nrows)
   if f1 == 0. :
     [f1, f2] = LkSet.xlimits( self )          # default is to find freq limits in the data
   print "frequency limits: %.3f - %.3f GHz" % (f1,f2)
   ymin = -1.*amax
   ymax = amax
   npanel = 0
   for ant in antList :
     npanel = npanel + 1
     if npanel > nrows * ncols :
       npanel = 1
       pyplot.clf()
     p = pyplot.subplot(nrows, ncols, npanel, aspect='equal')    # DL,DR in one panel
     p.tick_params( axis='both', which='major', labelsize=scale )
     p.axis( [ymin, ymax, ymin, ymax] )
     p.grid(True)
     for Leak in self.LeakList :
       if Leak.ant == ant :
         print "plotting DR and DL for antenna %d" % ant
         Leak.plotComplex( p, f1, f2 ) 
     #pyplot.title("C%d DR (circles, solid) and DL (diamonds, dashed)" % ant, fontdict={'fontsize': scale})
     if (npanel == nrows*ncols) or (ant == antList[-1] ) :
       pyplot.savefig( pp, format='pdf' )
   pp.close()
def multipage(filename, figs=None, dpi=200):
    pp = PdfPages(filename)
    if figs is None:
        figs = [plt.figure(n) for n in plt.get_fignums()]
    for fig in figs:
        fig.savefig(pp, format='pdf')
    pp.close()
Пример #27
0
def plot_miri_comparison():

    inst = webbpsf.MIRI()
    filtlist_W = [f for f in inst.filter_list if f[-1] == 'W']
    filtlist_C = [f for f in inst.filter_list if f[-1] != 'W']

    from matplotlib.backends.backend_pdf import PdfPages
    pdf=PdfPages('weights_miri_comparison.pdf')


    for filts in [filtlist_W, filtlist_C]:

        try:
            os.unlink('/Users/mperrin/software/webbpsf/data/MIRI/filters')
        except: 
            pass
        os.symlink('/Users/mperrin/software/webbpsf/data/MIRI/real_filters', '/Users/mperrin/software/webbpsf/data/MIRI/filters')
        plotweights('miri', filtlist=filts)

        os.unlink('/Users/mperrin/software/webbpsf/data/MIRI/filters')
        os.symlink('/Users/mperrin/software/webbpsf/data/MIRI/fake_filters', '/Users/mperrin/software/webbpsf/data/MIRI/filters')
        plotweights('miri', filtlist=filts, overplot=True, ls='--')
        P.draw()
        pdf.savefig()

    pdf.close()
Пример #28
0
	def compare_board_estimations(esti_extrinsics, board, board_dim, \
								actual_boards, save_name=None):
		"""
		Plots true and estimated boards on the same figure
		Args:
			esti_extrinsics: dictionary, keyed by image number, values are Extrinsics
			board:
			board_dim: (board_width, board_height)
			actual_boards: list of dictionaries
			save_name: filename, string
		"""
		if save_name:
			pp = PdfPages(save_name)
		plt.clf()

		for i in xrange(len(actual_boards)):
			fig = plt.figure()
			ax = fig.add_subplot(111, projection='3d')

			act_board = actual_boards[i]
			aX, aY, aZ = util.board_dict2array(act_board, board_dim)
			ax.plot_wireframe(aX, aY, aZ, color='b')

			if i in esti_extrinsics:
				esti_loc = esti_extrinsics[i].trans_vec
				esti_board = util.move_board(board, esti_loc)
				eX, eY, eZ = util.board_dict2array(esti_board, board_dim)
				ax.plot_wireframe(eX, eY, eZ, color='r')

			if pp:
				pp.savefig()
			else:
				plt.show()
		if pp:
			pp.close()
Пример #29
0
def heat_map_single(data, file = "heat_map_plate.pdf", *args, **kwargs):
    """ Create a heat_map for a single readout

    Create a heat_map for a single readout

    ..todo:: Share code between heat_map_single and heat_map_multiple
    """

    np_data = data.data
    pp = PdfPages(os.path.join(PATH, file))

    fig, ax = plt.subplots()

    im = ax.pcolormesh(np_data, vmin=np_data.min(), vmax=np_data.max()) # cmap='RdBu'
    fig.colorbar(im)

    # put the major ticks at the middle of each cell
    ax.set_xticks(np.arange(np_data.shape[1]) + 0.5, minor=False)
    ax.set_yticks(np.arange(np_data.shape[0]) + 0.5, minor=False)

    # Invert the y-axis such that the data is displayed as it appears on the plate.
    ax.invert_yaxis()
    ax.xaxis.tick_top()

    ax.set_xticklabels(data.axes['x'], minor=False)
    ax.set_yticklabels(data.axes['y'], minor=False)

    pp.savefig(fig)
    pp.close()
    fig.clear()

    return ax
Пример #30
0
def plotLoad(dataFolder, srv, TS, trace_type, tsInterval):
	srv_file = srv + "_" + TS + "_" + trace_type + ".json"
	srv_load = json.load(open(dataFolder + srv_file))

	fig, ax = plt.subplots()
	print "Ploting QoE evaluation for server :", srv
	ts = [int(x) for x in srv_load.keys() if int(x) > tsInterval[0] and int(x) < tsInterval[1]]
	sorted_ts = sorted(ts)
	tr_vals = [srv_load[str(cur_ts)] for cur_ts in sorted_ts]

	srvName = '$S_{' + str(int(srv.split('-')[1])) + '}$'
	plt.plot(sorted_ts, tr_vals, 'b-', label=srvName, linewidth=2.0, markersize=8)


	## Change the time stamp ticks
	num_intvs = int((tsInterval[1] - tsInterval[0])/900) + 1
	ts_labels = [tsInterval[0] + x*900 for x in range(num_intvs)]
	str_ts = [datetime.datetime.fromtimestamp(x*900 + tsInterval[0]).strftime('%H:%M') for x in range(num_intvs)]
	plt.xticks(ts_labels, str_ts, fontsize=15)

	box = ax.get_position()
	#ax.legend(loc='lower center', bbox_to_anchor=(0.5, 0),
	#	          fancybox=True, shadow=True, ncol=4, prop={'size':20})
	#params = {'legend.fontsize': 20,
	#          'legend.linewidth': 2}
	#plt.rcParams.update(params)
	# ax.set_title('Server QoE Score Observed on $S_{10}$', fontsize=20)
	# ax.set_xlabel("Time in a day", fontsize=20)
	ax.set_ylabel("Server Load", fontsize=20)
	# ax.set_ylim([0,5])
	plt.show()

	pdf = PdfPages(dataFolder + '/imgs/' + cache_agent + '_' + 'load.pdf')
	pdf.savefig(fig)
	pdf.close()
Пример #31
0
def plot(sideband,
         nominal,
         x_range,
         fit,
         fit_err,
         outputname,
         titel='',
         signal=None,
         sideband_sigma=None,
         nominal_sigma=None):
    pp = PdfPages(outputname)
    plt.clf()
    #plt.semilogy()
    plt.yscale('log', nonposy='clip')
    ax = plt.gca()
    ax.set_ylim([.01, 10])
    ax.set_xlim([650, 1850])

    plt.title(
        titel, fontsize=10
    )  # , loc='right')"CMS $\it{Preliminary}$       35.9 fb$^{-1}$ (13 TeV)"
    plt.plot(x_range,
             nominal,
             label="Exp $95\%$ CL nominal",
             color='red',
             linestyle='dotted')  #,color = exp_LH.bands[0][2])
    plt.plot(x_range,
             sideband,
             label="Exp $95\%$ CL sideband",
             color='blue',
             linestyle='dotted')  #,color = exp_LH.bands[0][2])

    if signal:
        plt.plot(x_range,
                 signal,
                 label="signal cross section",
                 color='black',
                 linestyle='dotted')  #,color = exp_LH.bands[0][2])

    if sideband_sigma:
        plt.fill_between(x_range,
                         sideband_sigma[0],
                         sideband_sigma[1],
                         alpha=0.3,
                         facecolor='yellow',
                         edgecolor='yellow',
                         linewidth=0,
                         label="$\pm$ 1 std. deviation sideband")
    if nominal_sigma:
        plt.fill_between(x_range,
                         nominal_sigma[0],
                         nominal_sigma[1],
                         alpha=0.6,
                         facecolor='yellow',
                         edgecolor='yellow',
                         linewidth=0,
                         label="$\pm$ 1 std. deviation nominal")
    ax.errorbar(x_range,
                fit,
                yerr=fit_err,
                label="fitted cross section",
                color='green',
                linestyle='dotted')  #,color = exp_LH.bands[0][2])
    #ax.set_yscale('symlog')

    plt.xlabel('VLQ mass (GeV)')
    plt.ylabel(
        r'$\mathbf{\sigma \times}$  BR(VLQ$\mathbf{\rightarrow}$tW) (pb)')
    plt.legend(loc="upper center", prop={'size': 12}, frameon=False)
    plt.savefig(pp, format='pdf')
    pp.close()
Пример #32
0
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages

whats = ("Q2", "Tk", "ang")
inpath = "qelma"

with PdfPages("qel_delta_s_ratio.pdf") as pdf:
    for what in whats:
        plt.figure()

        plt.title("numu, nc, E = 1000 MeV")

        x1, y1 = np.loadtxt("{}/numu_s+0.2_{}.txt".format(inpath, what), delimiter=' ', unpack=True)
        x2, y2 = np.loadtxt("{}/numu_s-0.2_{}.txt".format(inpath, what), delimiter=' ', unpack=True)
        x1r, y1r = np.loadtxt("{}/numu_s+0.2r_{}.txt".format(inpath, what), delimiter=' ', unpack=True)
        x2r, y2r = np.loadtxt("{}/numu_s-0.2r_{}.txt".format(inpath, what), delimiter=' ', unpack=True)

        plt.xlabel(what)
        plt.ylabel("#events")

        plt.plot(x1, (y1r - y1) / (y1r + y1), 'r-', label='$\Delta s = 0.2$')
        plt.plot(x1, (y2r - y2) / (y2r + y2), 'b-', label='$\Delta s = -0.2$')

        plt.legend()
        pdf.savefig()
Пример #33
0
# define the radii to be used for aperture photometry
radii = np.arange(40)+1

#make an array for the calculation of the area of each bagel (annulus)
area = [0 for x in range(len(radii))]

#calculate area of each bagel
for i in range(0, len(area)):
    if i == 0:
        area[i] = math.pi*math.pow(radii[0],2)
    else:
        area[i] = math.pi*(math.pow(radii[i],2)-math.pow(radii[i-1],2))

# create a PDF file for the plots    
with PdfPages('jr_compilation_J0905.pdf') as pdf:

    fig = plt.figure()

    collection = ['F475W','F814W','F160W']

    flux = np.zeros([len(collection),len(radii)])
    subflux = np.zeros([len(collection),len(radii)])

    for i in range (0, len(collection)):
        
        # read in the images
        file = glob.glob(dir+'J0905_final_'+collection[i]+'*sci.fits')
        hdu = fits.open(file[0])
        data[i], header[i] = hdu[0].data, hdu[0].header
        fnu[i] = header[i]['PHOTFNU']
from piecewise import piecewise_plot
from piecewise import piecewise
from matplotlib.backends.backend_pdf import PdfPages
#         chrom   start   sample  svclass size_bin        IMD
# 7       7365075 NSLC-0057-T01   inversion       1-10Kb  0.0
# 7       7369129 NSLC-0057-T01   inversion       1-10Kb  0.0

#input_dir = "/Users/khandekara2/iCloud/Sherlock-Lung/segments/"
input_dir = "/Users/azhark/iCloud/dev/Pediatric-Tumors/results/IMD-Plots/"
#input_dir = "/Users/khandekara2/iCloud/Alexandrov_Lab/data/SV/data/Mutographs_ESCC_Train9/segments/"
os.chdir(input_dir)

project = 'KiCS'
#project = 'Mutographs-ESCC'
output_path = "/Users/azhark/iCloud/dev/Pediatric-Tumors/results/IMD-Plots/"
pp = PdfPages(output_path + project + '_IMD_plots' + '.pdf')
#pp = PdfPages(project + '_IMD_plots' + '.pdf')

sizes = {
    '>10Mb': 50,
    '1Mb-10Mb': 40,
    '1-10Kb': 10,
    '100kb-1Mb': 30,
    '10-100kb': 20
}
size_order = ['1-10Kb', '10-100kb', '100kb-1Mb', '1Mb-10Mb', '>10Mb']

count = 0
for file in os.listdir('.'):
    if file.endswith(".IMD.tsv"):
        sample = file.split(".")[0].split("_")[0]
Пример #35
0
                    j += 1
                diff = abs(
                    (X.created_date_time[i] - X.created_date_time[curr_index])
                    / (60000))

                if diff <= 1000 and factor == n:
                    time_difference.append(diff)
                    y.append(hh)
        i += 1
    if len(y) > 0:
        # plot (time_difference, y)
        print(time_difference)
        print(y)


path = ''
pp = PdfPages('./Plot' + str(n) + '.pdf')

for file_name in file_names:
    try:
        path = file_name
        dataset = pd.read_csv((path))
    except:
        continue

    X = dataset.iloc[:, :]

    time_to_change_temperature(X)
    k += 1

pp.close()
def main() :
  import matplotlib.pyplot as plt
  import numpy as np
  from matplotlib.backends.backend_pdf import PdfPages
  import math
  import argparse #A parser for command line options.
  import sys
  import csv
  import glob
  
  #Since python cannot figure out my path I append my function directory to the path.
  sys.path.append('/home/jdw/UM2020Spring/M567/Functions/')

  #Now import StockFunctions.py.
  import StockFunctions as sf

  #Create an argparse object.
#  parser = argparse.ArgumentParser()

  #Add some optional arguments.
  #Get the name of the company for which the stock prices were obtained.
#  stockNameHelp = 'Input the name of a company whose stock prices you want to visualize.'
#  parser.add_argument('-s','--stockName', help = stockNameHelp, default = 'Google')

  #Get the year the stock prices were obtained.
#  yearHelp = 'Input the year the stock price was obtained. Value is integer.'
#  parser.add_argument('-y', '--year', help = yearHelp, default = 2020, type = int)

  #Get the month the stock prices were obtained.
#  monthHelp = 'Input the month the stock price was obtained. Value is integer.'
#  parser.add_argument('-m', '--month', help = monthHelp, default = 3, type = int)

  #Get the day the stock prices were obtained.
#  dayHelp = 'Input the day the stock price was obtained.  Value is integer.'
#  parser.add_argument('-d', '--day', help = dayHelp, default = 2, type = int)

  #Get the input directory for the plot.
#  inputHelp = 'Input the full path of the directory in which the data is found.'
#  defaultInputDir = '/home/jdw/UM2020Spring/M567/Data/Google/'
#  parser.add_argument('-D','--Directory', help = inputHelp, default = defaultInputDir)

  #Get the output directory for the plot.
#  outputHelp = 'Input the full path of the directory in which to place the output file.'
#  defaultOutputDir = '/home/jdw/UM2020Spring/M567/Plots/'
#  parser.add_argument('-P','--Plots', help = outputHelp, default = defaultOutputDir)
  
  #Set the input arguments to the args object.
#  args = parser.parse_args()

  #Make up the input and output file names.
#  stockAbbrev = sf.GetStockAbbrev(args.stockName)
#  datetime = str(args.year) + str('{0:02d}'.format(args.month)) + str('{0:02d}'.format(args.day))

  #Choose a company whose stock price you want to visualize.
  stockName = 'Verizon'
  stockAbbrev = sf.GetStockAbbrev(stockName)

  directory = ('/home/jdw/UM2020Spring/M567/Data/' + stockName +
               '/StockPrice_' + stockAbbrev + '*.txt')
  
  infiles = glob.glob(directory)

  for filename in infiles :
    if(filename[-4:] == '.txt') :

      datetime = filename[-16 : -4]
      month = filename[-12 : -10]
      month = month.lstrip('0')
      day = filename[-10 : -8]
      day = day.lstrip('0')
      year = filename[-16 : -12]
      
      #Create a output file name to where the plot will be saved.
      outfilepath = '/home/jdw/UM2020Spring/M567/Data/' + stockName + '/'
      outfilename = stockName + 'DailyStockPrice' + datetime + '.pdf'
      outfile = outfilepath + outfilename

      
      #Open and read in the saved data.  We need to use infile[0] because glob returns a list.
      with open(filename) as csv_file :
        csv_reader = csv.reader(csv_file, delimiter = ',')
        line_count = 0
        dateTime = []
        price = []
        for row in csv_reader :
          dateTime.append(float(row[0]))
          price.append(float(row[1]))
        #End of the for loop - for row in csv_reader:
      #End of the with/open loop.

      numHalfHours = 13
      dpperhalfhour = math.ceil(len(price)/numHalfHours)
  
      tickval = np.zeros(8)
      for i in range(1, 8) :
        tickval[i] = dpperhalfhour*(2*i - 1)
      #End of the for loop - for i in range(1, 8) :

      #Create a time vector.
      t = np.arange(1, len(price) + 1)
  
      #Get the date for the data.
      monthNameStr = sf.convertMonthNumToMonthName(int(month))
      dateStr = (monthNameStr + ' ' + day + ' ' + year)
    
      #Create a title string.
      titlestr = ('Stock Price vs Time for ' + dateStr + ' - ' + stockName)

      #Lets make sure we have a clean canvas.
      plt.close('all')

      plt.figure()
      plt.plot(t, price, 'b')
      plt.grid('on')
      plt.title(titlestr, fontsize = 9)
      plt.ylabel('Stock Price(Dollars)')
      plt.xlabel('Time')
      plt.xticks(tickval, ('7:30 ',
                       '8:00AM','9:00AM','10:00AM','11:00AM','12:00PM','1:00PM','2:00PM'),
             fontsize = 7)
  
      #Save the plot to a file.
      pp = PdfPages(outfile)
      pp.savefig()
      pp.close()

      plt.cla()
      plt.clf()
nsupp, ny_2p5, nx2p5 = np.shape(xlocation)
ncfile.close()
print 'min, max rlon = ', np.min(rlon), np.max(rlon)

#  ----  read in the fraction of samples with climatological zero precipitation

infile = data_directory + \
    'climatology_gamma_parameters_ndfd2p5_'+cleadb+'_to_'+cleade+'_'+cmonth+'.nc'
print 'reading from ', infile
nc = Dataset(infile)
fraction_zero = nc.variables['fraction_zero'][:]
nc.close()

# ---- get nearest NDFD 2.5-km gridpoint to input lon, lat.  Then same for CCPA

with PdfPages('supp_locations_' + cleadb + '_to_' + cleade + '_' + cmonth +
              '.pdf') as pdf:

    for city in cities:
        rlonin, rlatin = cities[city]
        print 'rlonin, rlatin = ', rlonin, rlatin
        istat, iloc, jloc = find_nearest_latlon(rlonin, rlatin, rlon, rlat)
        print city, ' jloc, iloc = ', jloc, iloc
        print 'i,   iloc,   jloc,    lon(2.5),   lat(2.5) '
        for i in range(50):
            ix = xlocation[i, jloc, iloc]
            jy = ylocation[i, jloc, iloc]
            print i, ix, jy, rlon[jy, ix], rlat[jy, ix]

        colorst = ['White','#ECFFFF','#D9F7FF','#C4E8FF','#E8FBE8','#C7F4C7','#92F592','Yellow','Gold',\
            'Orange','#FFB2B2','#EC5B71','Red','Magenta','DarkOrchid','White']
        colorstblack=['White','Black','Black','Black','Black', 'Black','Black','Black',\
Пример #38
0
        plt.annotate("mean: " + str(airpact_3d[sp][t,:,:].mean()) + " "+ unit_list[i], xy=(0, 1.02), xycoords='axes fraction')
        
        plt.savefig(outpng) 
        plt.show()
# This requires ffmpeg program, which is not easy to install in aeolus/kamiak
# To make a video, download all the pngs in your computer and execute the command below
# "ffmpeg -framerate 3 -i WRFChem_hourly_basemap_T2_%05d.png T2_output.mp4" 
#        
#    check_call(["ffmpeg", "-framerate", "3", "-i", "outputs/WRFChem_hourly_basemap_"+sp+ "_%05d.png",  "outputs/"+sp + "_output.mp4"])
'''
############################################
# averaged domain basemaps
############################################
#save maps into the pdf file (two maps in single page)
with PdfPages(base_dir + 'maps/airpact_avg_basemap_' + '_' +
              start.strftime("%Y%m%d") + '-' + end.strftime("%Y%m%d") +
              '.pdf') as pdf:

    for i, sp in enumerate(var_list):

        fig = plt.figure(figsize=(14, 10))
        plt.title(sp)

        # compute auto color-scale using maximum concentrations
        #down_scale = np.percentile(airpact_3d[sp], 5)
        #up_scale = np.percentile(airpact_3d[sp], 95)
        down_scale = 28
        up_scale = 46
        clevs = np.round(
            np.arange(down_scale, up_scale, (up_scale - down_scale) / 10), 3)
        print("debug clevs", clevs, sp)
Пример #39
0
def main():
    selected_cols_ids = [
        '1.0', '2.0', '3.0', '4.0', '5.0', '6.0', '7.0', '8.0', '9.0', '10.0',
        '11.0', '12.0', '13.0', '14.0', '15.0', '15.5', '16.0', '16.5', '17.0'
    ]
    remove_questions = [
        "pokken / kunt u aangeven welke van de onderstaande (kinder)ziektes u gehad hebt?",
        "op hoeveel momenten van de dag eet u iets?"
    ]
    input_df_path = sys.argv[1]  # input questionnaire data
    input_question_overview = sys.argv[2]  # input of the questionnaire items
    input_recode_info = sys.argv[
        3]  # input file with the recoding and model information
    input_question_pgs_combinations = sys.argv[
        4]  # selection file of the question x prs combinations
    input_question_pgs_combinations_pvalues = sys.argv[
        5]  #  pvalues from the meta analysis
    input_pgs_path_ugli = sys.argv[
        6]  # path to the directory with the Global Screening Array input data
    input_pgs_path_cyto = sys.argv[
        7]  # path to the directory with the HumanCytoSNP-12 input data
    input_analysis_output_ugli_dir = sys.argv[
        8]  # path to the directory with the Global Screening Array output results
    input_analysis_output_cyto_dir = sys.argv[
        9]  # path to the directory with the HumanCytoSNP-12 output results
    translation_questions_path = sys.argv[
        10]  # input path with the question translations
    translation_prs_path = sys.argv[11]  # input path wit the prs translations
    output_dir = sys.argv[12]  # output dit

    # create output dit
    create_dir(output_dir)

    # read the input data
    df = pd.read_pickle(input_df_path)
    df_question_ids_total = pd.read_csv(input_question_overview,
                                        sep="\t",
                                        index_col=0,
                                        dtype="str")
    df_recode_info = pd.read_pickle(input_recode_info)
    df_recode_info = df_recode_info.set_index("question_id")
    df_question_pgs = pd.read_pickle(input_question_pgs_combinations)
    df_question_pgs_pvalues = pd.read_pickle(
        input_question_pgs_combinations_pvalues)

    #process ugli
    df_pgs_ugli = pd.read_pickle(input_pgs_path_ugli)
    df_pgs_ugli.columns = df_pgs_ugli.columns.str.replace(
        "/", ".").str.replace(" ", ".").str.replace("-", ".").str.replace(
            "(", ".").str.replace(")", ".")
    df_pgs_ugli = df_pgs_ugli.loc[df_pgs_ugli.index.intersection(df.index), :]

    #process cyto
    df_pgs_cyto = pd.read_pickle(input_pgs_path_cyto)
    df_pgs_cyto.columns = df_pgs_cyto.columns.str.replace(
        "/", ".").str.replace(" ", ".").str.replace("-", ".").str.replace(
            "(", ".").str.replace(")", ".")
    df_pgs_cyto = df_pgs_cyto.loc[df_pgs_cyto.index.intersection(df.index), :]

    # process the translations
    df_translation_info = None
    if translation_questions_path is not None:
        df_translation_info = pd.read_csv(translation_questions_path,
                                          sep="\t",
                                          index_col="Question")

    df_translation_prs_info = None
    if translation_prs_path is not None:
        df_translation_prs_info = pd.read_csv(translation_prs_path,
                                              sep="\t",
                                              index_col="PRS's")

    # create output lists
    plot_data = []

    # process the questions per question
    for index, row in df_question_pgs.iterrows():
        if index not in remove_questions:
            single_question_ids = df_question_ids_total.loc[index,
                                                            selected_cols_ids]

            # find the first question id (except for the ever positive tested, we there for use the last question id)
            if index == "Positive tested cumsum":
                single_question_ids = single_question_ids.iloc[::-1]
            single_question_first_id = func_first_value(single_question_ids)

            # get model type to create the correct plot
            model_type = df_recode_info.loc[single_question_first_id,
                                            "model_type"]
            answer_options_str = None
            if index in df_translation_info.index:
                answer_options_str = df_translation_info.loc[
                    index, "Answers_options_plots"]

            if isinstance(model_type, pd.core.series.Series):
                model_type = model_type.iloc[0]

            answer_options = dict()
            if answer_options_str is not None and pd.isna(
                    answer_options_str) == False:
                if isinstance(answer_options_str, pd.core.series.Series):
                    answer_options_str = answer_options_str.iloc[0]
                answer_options = json.loads(answer_options_str)

            # get the right plot type
            graph_type = "boxplots"
            if model_type == "gaussian":
                graph_type = "scatter"

            row_filtered = row.dropna()

            # loop through the PRS to create the plot per PRS
            for pgs_id, single_z_score in row_filtered.iteritems():
                single_pvalue = float(df_question_pgs_pvalues.loc[index,
                                                                  pgs_id])
                y_ugli = df_pgs_ugli.loc[:, pgs_id]
                x_ugli = df.loc[y_ugli.index, single_question_first_id]
                x_ugli = x_ugli.dropna()

                # fix plotting issue
                if single_question_first_id == "covt16_christmas_adu_q_1_b":
                    x_ugli = x_ugli.replace({3.0: 2.0})
                y_ugli = y_ugli.loc[x_ugli.index]

                y_cyto = df_pgs_cyto.loc[:, pgs_id]
                x_cyto = df.loc[y_cyto.index, single_question_first_id]
                x_cyto = x_cyto.dropna()

                # fix plotting issue
                if single_question_first_id == "covt16_christmas_adu_q_1_b":
                    x_cyto = x_cyto.replace({3.0: 2.0})
                y_cyto = y_cyto.loc[x_cyto.index]

                # calculate z scores and p values for the
                # individual plots of ugli and cyto
                z_score_ugli, pvalue_ugli = caalculate_z_scrore_from_models(
                    input_analysis_output_ugli_dir, pgs_id, index,
                    single_question_first_id)
                z_score_cyto, pvalue_cyto = caalculate_z_scrore_from_models(
                    input_analysis_output_cyto_dir, pgs_id, index,
                    single_question_first_id)

                # Find the correct translations of question and prs
                label_en = index
                if index in df_translation_info.index:
                    label_en = df_translation_info.loc[index, "label_en"]

                label_prs_en = pgs_id
                if pgs_id in df_translation_prs_info.index:
                    label_prs_en = df_translation_prs_info.loc[pgs_id,
                                                               "English Label"]

                # Save the plotting information
                single_plot_data = {
                    "x_ugli": x_ugli,
                    "x_cyto": x_cyto,
                    "y_ugli": y_ugli,
                    "y_cyto": y_cyto,
                    "question_title": label_en,
                    "pgs_title": label_prs_en,
                    "graph_type": graph_type,
                    "answers": answer_options,
                    "z_score": single_z_score,
                    "pvalue": single_pvalue,
                    "z_score_ugli": z_score_ugli,
                    "pvalue_ugli": pvalue_ugli,
                    "z_score_cyto": z_score_cyto,
                    "pvalue_cyto": pvalue_cyto,
                }
                plot_data.append(single_plot_data)

    ###
    ### create plots
    ###

    # The PDF document
    plot_file_name = "question_pgs_plots_{date}.pdf".format(
        date=datetime.now().strftime("%d-%m-%Y"))
    pdf_pages = PdfPages(os.path.join(output_dir, plot_file_name))

    for index, data in enumerate(plot_data):
        fig = plt.figure(figsize=(11.69, 8.27), dpi=100)
        figure_title = "{question}\nPGS: {pgs}\nMeta analysis Z-score: {zscore:0.02f}, p-value: {pvalue:0.2E}".format(
            question=data["question_title"],
            pgs=data["pgs_title"],
            zscore=data["z_score"],
            pvalue=data["pvalue"])
        fig.suptitle(figure_title, y=0.96, fontsize=12)

        ##
        ## UGLI
        ##
        plt.subplot2grid((1, 2), (0, 0), fig=fig)
        ax_ugli = plt.gca()
        if data["graph_type"] == "scatter":
            sns.regplot(data["x_ugli"],
                        data["y_ugli"],
                        ax=ax_ugli,
                        scatter_kws={
                            "color": "black",
                            "s": 20,
                            'alpha': 0.3,
                            "rasterized": True,
                            "clip_on": False
                        })
        else:
            sns.boxplot(data["x_ugli"],
                        data["y_ugli"],
                        ax=ax_ugli,
                        color="w",
                        showfliers=False)

            # add n-values above the boxes
            unique_labels = data["x_ugli"].unique()
            n_value_labels = []
            hivalues = []
            lovalues = []
            for unique_label in unique_labels:
                single_data = data["y_ugli"].where(
                    data["x_ugli"] == unique_label).dropna()
                q1, med, q3 = np.percentile(single_data, [25, 50, 75])
                iqr = q3 - q1
                hival = q3 + 1.5 * iqr
                loval = q1 - 1.5 * iqr

                wiskhi = single_data[single_data <= hival]
                if len(wiskhi) == 0 or np.max(wiskhi) < q3:
                    hival = q3
                else:
                    hival = np.max(wiskhi)
                hivalues.append(hival)
                wisklo = single_data[single_data >= loval]
                if len(wisklo) == 0 or np.min(wisklo) > q1:
                    loval = q1
                else:
                    loval = np.min(wisklo)
                lovalues.append(loval)
                if data["question_title"] == "Average time spend sitting per weekend day" or data[
                        "question_title"] == "Average time spend sitting per working day":
                    unique_label = unique_label - 1
                n_value_labels.append({
                    "x_pos":
                    unique_label -
                    1 if min(unique_labels) != 0 else unique_label,
                    "y_pos":
                    hival,
                    "label":
                    "n={}".format(single_data.shape[0])
                })
            text_distance = (max(hivalues) - min(lovalues)) * 0.005
            for label in n_value_labels:
                if unique_labels.shape[0] < 6:
                    ax_ugli.text(label["x_pos"],
                                 label["y_pos"] + text_distance,
                                 label["label"],
                                 ha='center',
                                 va='bottom',
                                 color="gray")
                else:
                    ax_ugli.text(label["x_pos"],
                                 label["y_pos"] + text_distance,
                                 label["label"],
                                 ha='center',
                                 va='bottom',
                                 color="gray",
                                 fontsize=6)

        # Add title
        title_ugli = "Global Screening Array\nZ-score: {zscore:0.02f}, p-value: {pvalue:0.2E}".format(
            zscore=data["z_score_ugli"], pvalue=data["pvalue_ugli"])
        ax_ugli.set_title(title_ugli, fontsize=12)

        # set the labels
        ax_ugli.set_xlabel(short_str(data["question_title"], 50), fontsize=10)
        ax_ugli.set_ylabel("PRS: {}".format(short_str(data["pgs_title"], 50)),
                           fontsize=10)

        # edit the design of the plot
        ax_ugli.grid(False)
        ax_ugli.spines['right'].set_color('none')
        ax_ugli.spines['top'].set_color('none')
        ax_ugli.spines['bottom'].set_position(('axes', -0.05))
        ax_ugli.yaxis.set_ticks_position('left')
        ax_ugli.spines['left'].set_position(('axes', -0.05))
        ax_ugli.spines['left'].set_color("dimgray")
        ax_ugli.spines['bottom'].set_color("dimgray")

        ##
        ## CYTO
        ##
        plt.subplot2grid((1, 2), (0, 1), fig=fig)
        ax_cyto = plt.gca()

        if data["graph_type"] == "scatter":
            sns.regplot(data["x_cyto"],
                        data["y_cyto"],
                        ax=ax_cyto,
                        scatter_kws={
                            "color": "black",
                            "s": 20,
                            'alpha': 0.3,
                            "rasterized": True,
                            "clip_on": False
                        })
        else:
            sns.boxplot(data["x_cyto"],
                        data["y_cyto"],
                        ax=ax_cyto,
                        color="w",
                        showfliers=False)

            # Add the n-values above the boxes
            unique_labels = data["x_cyto"].unique()
            if True:
                n_value_labels = []
                hivalues = []
                lovalues = []
                for unique_label in unique_labels:
                    single_data = data["y_cyto"].where(
                        data["x_cyto"] == unique_label).dropna()
                    q1, med, q3 = np.percentile(single_data, [25, 50, 75])
                    iqr = q3 - q1
                    hival = q3 + 1.5 * iqr
                    loval = q1 - 1.5 * iqr

                    wiskhi = single_data[single_data <= hival]
                    if len(wiskhi) == 0 or np.max(wiskhi) < q3:
                        hival = q3
                    else:
                        hival = np.max(wiskhi)
                    hivalues.append(hival)
                    wisklo = single_data[single_data >= loval]
                    if len(wisklo) == 0 or np.min(wisklo) > q1:
                        loval = q1
                    else:
                        loval = np.min(wisklo)
                    lovalues.append(loval)
                    if data["question_title"] == "Average time spend sitting per weekend day" or data[
                            "question_title"] == "Average time spend sitting per working day":
                        unique_label = unique_label - 1
                    n_value_labels.append({
                        "x_pos":
                        unique_label -
                        1 if min(unique_labels) != 0 else unique_label,
                        "y_pos":
                        hival,
                        "label":
                        "n={}".format(single_data.shape[0])
                    })
                text_distance = (max(hivalues) - min(lovalues)) * 0.005
                for label in n_value_labels:
                    if unique_labels.shape[0] < 6:
                        ax_cyto.text(label["x_pos"],
                                     label["y_pos"] + text_distance,
                                     label["label"],
                                     ha='center',
                                     va='bottom',
                                     color="gray")
                    else:
                        ax_cyto.text(label["x_pos"],
                                     label["y_pos"] + text_distance,
                                     label["label"],
                                     ha='center',
                                     va='bottom',
                                     color="gray",
                                     fontsize=6)

        # Add the title
        title_ugli = "HumanCytoSNP-12\nZ-score: {zscore:0.02f}, p-value: {pvalue:0.2E}".format(
            zscore=data["z_score_cyto"], pvalue=data["pvalue_cyto"])
        ax_cyto.set_title(title_ugli, fontsize=12)

        # Set the labels
        ax_cyto.set_xlabel(short_str(data["question_title"], 50), fontsize=10)
        ax_cyto.set_ylabel("PRS: {}".format(short_str(data["pgs_title"], 50)),
                           fontsize=10)

        # edit the design of the plot
        ax_cyto.grid(False)
        ax_cyto.spines['right'].set_color('none')
        ax_cyto.spines['top'].set_color('none')
        ax_cyto.spines['bottom'].set_position(('axes', -0.05))
        ax_cyto.yaxis.set_ticks_position('left')
        ax_cyto.spines['left'].set_position(('axes', -0.05))
        ax_cyto.spines['left'].set_color("dimgray")
        ax_cyto.spines['bottom'].set_color("dimgray")

        #change tick labels
        if len(data["answers"]) > 0:
            answers_df = pd.DataFrame.from_dict(data["answers"],
                                                orient="index",
                                                columns=["answer_str"])
            answers_df.index = answers_df.index.astype("float")
            if np.min(answers_df.index) > 0:
                if data["graph_type"] != "scatter":
                    answers_df.index = answers_df.index - 1
            answers_df = answers_df.sort_index()
            answers_df["answer_str"] = answers_df["answer_str"].replace(
                "NaN", np.nan)
            answers_df["answer_str"] = answers_df["answer_str"].apply(
                short_str)
            answers_df = answers_df.dropna()

            ax_ugli.set_xticks(list(answers_df.index))
            ax_ugli.set_xticklabels(list(answers_df["answer_str"]),
                                    rotation=45,
                                    ha='right')
            ax_cyto.set_xticks(list(answers_df.index))
            ax_cyto.set_xticklabels(list(answers_df["answer_str"]),
                                    rotation=45,
                                    ha='right')

        # save the plots
        plt.tight_layout()
        plt.subplots_adjust(top=0.80,
                            bottom=0.27,
                            left=0.13,
                            right=0.94,
                            wspace=0.3)
        pdf_pages.savefig()
        plt.clf()

    pdf_pages.close()
    print("end script")
Пример #40
0
def renormalization(model, settings, sol, options, temp, dLfrac, anh_order):
    """
    :param model: The LD model
    :param sol : The optimal solution vector from original fit
    :temp : the temperature at which the renormalization is performed
    :anh_order : the order of anharmonicity for renormalization (only 4th for now)
    :return:
    """
    print('\n')
    print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
    print('!!!!!! STARTING ANHARMONIC RENORMALIZATION @ ', temp, 'K !!!!!!')
    print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
    print('\n')

    if anh_order < 4:
        raise ValueError('Max anharmonic order must at least be 4!')

    path = str(temp) + 'K/'
    primitive = settings['structure']['prim']
    nconfig = int(settings['renormalization']['nconfig'])
    nprocess = int(settings['renormalization']['nprocess'])
    mix_old = float(settings['renormalization']['mix_old'])
    conv_thresh = float(settings['renormalization']['conv_thresh'])
    nac = NA_correction.from_dict(settings['phonon'])
    etafac = settings['phonon'].getfloat('etafac', 8.0)
    pdfout = 'plots-' + temp + 'K.pdf'
    pdfout = PdfPages(pdfout.strip())
    atexit.register(upon_exit, pdfout)

    try:
        os.mkdir(path)
    except:
        pass
    if os.path.isfile('SPOSCAR'):
        pass
    else:
        raise ValueError('SPOSCAR not found!')
    with open(primitive, 'r') as f:
        lines = f.readlines()
        #lines[1] = str(float(lines[1])*(1+dLfrac))+' \n'
    with open(primitive + str(temp) + 'K', 'w') as ff:
        ff.writelines(lines)
    with open('SPOSCAR', 'r') as f:
        lines = f.readlines()
        #lines[1] = str(float(lines[1])*(1+dLfrac))+' \n'
    with open(path + 'SPOSCAR', 'w') as ff:
        ff.writelines(lines)
    fcfile = 'FORCE_CONSTANTS_2ND'
    shutil.copy(fcfile, fcfile + '_ORG')
    shutil.copy(fcfile + '_ORG', path + fcfile)
    shutil.copy(path + fcfile, path + fcfile + '_OLD')

    prim = SymmetrizedStructure.init_structure(settings['structure'],
                                               primitive + str(temp) + 'K',
                                               options.symm_step,
                                               options.symm_prim,
                                               options.log_level)
    model = init_ld_model(
        prim, settings['model'],
        settings['LDFF'] if 'LDFF' in settings.sections() else {},
        options.clus_step, options.symC_step, options.ldff_step)

    print(prim.lattice.a)
    print(prim.lattice)
    print(settings['training']['traindat1'])

    # Set-up initial sensing matrix with structures used for FC fitting
    Amat_TD, fval_TD = init_training(model, settings['training'], step=2)
    nVal, nCorr = Amat_TD.shape
    settings_TD = copy.deepcopy(settings)
    settings_TD['training'][
        'traindat1'] = path + 'SPOSCAR ' + path + 'disp*'  # change path to TD path going forward

    sol = np.ones(nCorr) * sol
    sol_renorm = np.copy(sol[:])
    param = model.get_params()
    print('params : ', param)
    start2 = 0
    for order in range(2):
        start2 += param[order]
        start4 = start2
    for order in range(2, 4):
        start4 += param[order]
    print('start2 : ', start2, ',  start4 : ', start4)
    sol2orig = np.copy(sol[start2:start2 + param[2]])
    sol2renorm_old = np.zeros(len(sol2orig))
    sol4 = np.copy(sol[start4:start4 + param[4]])
    if anh_order >= 6:
        start6 = start4
        for order in range(4, 6):
            start6 += param[order]
            sol6 = np.copy(sol[start6:start6 + param[6]])

    # Calculate free energy and T-dependent QCV matrix
    free_energy_old, Lmatcov, poscar = get_qcv(prim.atomic_masses, temp,
                                               path)  # initial free energy

    count = 0
    while True:
        count += 1
        print('##############')
        print('ITERATION ', count)
        print('##############')
        if count > 1:
            # Generate T-dependent atomic displacements using QCV
            qcv_displace(Lmatcov, poscar, nconfig, nprocess, path)
            # Set-up T-dependent sensing matrix
            Amat_TD, fval_TD = init_training(model,
                                             settings_TD['training'],
                                             step=2)
            nVal, nCorr = Amat_TD.shape

        # collect displacements for each order
        A2 = Amat_TD[:, start2:start2 + param[2]].toarray()
        A4 = Amat_TD[:, start4:start4 + param[4]].toarray()
        if anh_order >= 6:
            A6 = Amat_TD[:, start6:start6 + param[6]].toarray()

        ##### RENORMALIZE FC2 #####
        A2inv = np.linalg.pinv(
            A2
        )  # Moore-Penrose pseudo-inverse...essentially a least-squares solver
        sol2renorm = A2inv.dot(A4.dot(sol4))  # least-squares solution
        if anh_order >= 6:
            sol2renorm += A2inv.dot(A6.dot(sol6))
        sol_renorm[
            start2:start2 +
            param[2]] = sol2orig + sol2renorm_old * mix_old + sol2renorm * (
                1 - mix_old)
        print('Renormalized sol2 : \n', sol_renorm[start2:start2 + param[2]])

        # Save renormalized FORCE_CONSTANTS_2ND
        phonon = Phonon(prim,
                        model,
                        sol_renorm,
                        pdfout,
                        NAC=nac,
                        etafac=etafac)
        save_pot(model, sol_renorm, settings['export_potential'], 2, phonon)
        shutil.copy(path + fcfile, path + fcfile + '_OLD')
        shutil.copy(fcfile, path + fcfile)

        free_energy, Lmatcov, poscar = get_qcv(prim.atomic_masses, temp, path)

        # Check relative difference in sol2renorm
        if count > 1:
            cosine_sim = np.dot(sol2renorm, sol2renorm_old) / np.linalg.norm(
                sol2renorm) / np.linalg.norm(sol2renorm_old)
        else:
            cosine_sim = 0
        d_free_energy = (free_energy - free_energy_old) / free_energy
        rel_diff = np.sum(abs(sol2renorm) / abs(sol2orig)) / len(sol2renorm)
        print('Cosine similiarty to the previous sol2renorm is ', cosine_sim)
        print('Relative difference from original sol2 is ', rel_diff)
        print('Relative change in free energy (meV/atom) is ', d_free_energy)
        sol2renorm_old = np.copy(sol2renorm[:])
        free_energy_old = free_energy

        # BREAK if relative difference in Free Energy is small
        #        if abs(d_free_energy) < conv_thresh and count > 1:
        if cosine_sim > conv_thresh and count > 1:
            print('!!!!! Convergence Reached - Renormalization Done for ',
                  str(temp), ' K !!!!!')
            break

    sol_renorm = np.asarray(sol_renorm).reshape(1, nCorr)
    np.savetxt('solution_all_' + temp + 'K', sol_renorm)
    phonon_step(model, prim, sol_renorm, settings['phonon'], temp,
                options.phonon_step, pdfout)  # Perform final phonon analysis
    shutil.move(fcfile + '_ORG', fcfile)
    for i in range(nconfig):
        shutil.rmtree(path + 'disp-' + str(i + 1))
Пример #41
0
            #plt.savefig('cond_%s_%s.pdf' % (parameters[i], parameters[j]), bbox_tight=True)
        #	plt.close()
    plt.subplots_adjust(wspace=0,
                        hspace=0,
                        bottom=0.2,
                        top=0.8,
                        left=0.2,
                        right=0.8)
    plt.savefig(prefix + 'marg.pdf')
    plt.savefig(prefix + 'marg.png')
    plt.close()
else:
    from matplotlib.backends.backend_pdf import PdfPages
    sys.stderr.write('1dimensional only. Set the D environment variable \n')
    sys.stderr.write('to D=2 to force 2d marginal plots.\n')
    pp = PdfPages(prefix + 'marg1d.pdf')

    for i in range(n_params):
        plt.figure(figsize=(3, 3))
        plt.xlabel(parameters[i])
        plt.locator_params(nbins=5)

        m = s['marginals'][i]
        iqr = m['q99%'] - m['q01%']
        xlim = m['q01%'] - 0.3 * iqr, m['q99%'] + 0.3 * iqr
        #xlim = m['5sigma']
        plt.xlim(xlim)

        oldax = plt.gca()
        x, w, patches = oldax.hist(values[:, i],
                                   bins=numpy.linspace(xlim[0], xlim[1], 20),
Пример #42
0
def plot_best_latent(exp_results, 
                     out_filenames):

    sample_d = pickle.load(open(exp_results))
    chains = sample_d['chains']
    
    exp = sample_d['exp']
    data_filename = exp['data_filename']
    data_dict = pickle.load(open(data_filename, 'r'))
    meta_filename = data_filename[:-4] + "meta"
    m = pickle.load(open(meta_filename, 'r'))
    meta_infile = m['infile']
    meta = pickle.load(open(meta_infile, 'r'))
    conn_matrix = meta['conn']

    chains = [c for c in chains if type(c['scores']) != int]
    CHAINN = len(chains)

    chains_sorted_order = np.argsort([d['scores'][-1] for d in chains])[::-1]

    from matplotlib.backends.backend_pdf import PdfPages

    # get data
    
    for chain_pos, (latent_fname, latent_pickle) in enumerate(out_filenames):
        best_chain_i = chains_sorted_order[chain_pos]
        best_chain = chains[best_chain_i]
        sample_latent = best_chain['state']
        jobs_assignment =  np.array(sample_latent['domains']['jobs']['assignment'])
        users_assignment = np.array(sample_latent['domains']['users']['assignment'])

        ji = np.argsort(jobs_assignment).flatten()
        ja = jobs_assignment[ji]
        j_pos = np.argwhere(np.diff(ja) != 0).flatten()

        ui = np.argsort(users_assignment).flatten()
        ua = users_assignment[ui]
        u_pos = np.argwhere(np.diff(ua) != 0).flatten()
        
        pp = PdfPages(latent_fname)
        
        f = pylab.figure()
        ax = f.add_subplot(1, 1, 1)
        cm = conn_matrix['link']
        cm = cm[ui, :]
        cm = cm[:, ji]
        
        ax.imshow(cm > 0, interpolation='nearest', cmap=pylab.cm.Greys)
        for i in u_pos:
            ax.axhline(i)

        for i in j_pos:
            ax.axvline(i)

        f.savefig(pp, format='pdf')


        f = pylab.figure()
        plot_t1t2_params(f, conn_matrix, users_assignment, jobs_assignment, 
                         sample_latent['relations']['R1']['ss'], 
                         sample_latent['relations']['R1']['hps'], 
                         model = data_dict['relations']['R1']['model'],
                         MAX_DIST = 30, MAX_CLASSES=10)
        f.savefig(pp, format='pdf')
        
        pp.close()

        pickle.dump(sample_latent, open(latent_pickle, 'w'))
Пример #43
0
import datetime

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages

# Create the PdfPages object to which we will save the pages:
# The with statement makes sure that the PdfPages object is closed properly at
# the end of the block, even if an Exception occurs.
with PdfPages("multipage_pdf.pdf") as pdf:
    plt.figure(figsize=(3, 3))
    plt.plot(range(7), [3, 1, 4, 1, 5, 9, 2], "r-o")
    plt.title("Page One")
    pdf.savefig()  # saves the current figure into a pdf page
    plt.close()

    # # if LaTeX is not installed or error caught, change to `usetex=False`
    # plt.rc('text', usetex=False)
    # plt.figure(figsize=(8, 6))
    # x = np.arange(0, 5, 0.1)
    # plt.plot(x, np.sin(x), 'b-')
    # plt.title('Page Two')
    # pdf.attach_note("plot of sin(x)")  # you can add a pdf note to
    #                                    # attach metadata to a page
    pdf.savefig()
    plt.close()

    # plt.rc('text', usetex=False)
    # fig = plt.figure(figsize=(4, 5))
    # plt.plot(x, x ** 2, 'ko')
    # plt.title('Page Three')
Пример #44
0
import matplotlib

x = np.arange(0.01, 10, 0.05)
y = np.arange(0.01, 10, 0.05)
X, Y = np.meshgrid(x, y)
m = np.array([1.0, 2.0])

Z = X + Y - m[0] - m[1] - X * np.log(X/m[0]) - Y * np.log(Y/m[1])

fig = plt.figure()
ax = plt.axes()
plt.pcolormesh(X, Y, Z, cmap='magma')
pp=plt.colorbar (orientation="vertical")
plt.rcParams['font.size'] = 16
plt.rcParams['xtick.labelsize'] = 16
plt.rcParams['ytick.labelsize'] = 16
matplotlib.rcParams['ps.useafm'] = True
matplotlib.rcParams['pdf.use14corefonts'] = True

cont=plt.contour(X,Y,Z,8,vmin=-1,vmax=1, colors=['black'])
cont.clabel(fmt='%1.1f', fontsize=16)
plt.plot(1.0,2.0,marker='.',markersize=16)
plt.xlabel(r'$x_1$', fontsize=16)
plt.ylabel(r'$x_2$', fontsize=16)
plt.tick_params(which='major', labelsize=16)
plt.gca().set_aspect('equal')

ppdf = PdfPages('information_entropy.pdf')
ppdf.savefig(fig,bbox_inches="tight", pad_inches=0.0)
ppdf.close()
def plot_popular_industry(industry_data, number, indicator):

    occupation_rank = industry_data.newdf.sort_values(
        by=indicator, ascending=False).ix[:number]
    occupation_rank["unapproved_case"] = occupation_rank[
        "application_pool"] - occupation_rank["approved_case"]

    with PdfPages('popular occupation groups ranked by ' + indicator +
                  '.pdf') as pdf:
        plt.figure(figsize=(30, 20))
        ax1 = occupation_rank["approved_case"].plot(
            kind="barh",
            alpha=0.7,
            color=["skyblue", "pink", "green"],
            figsize=(20, 15))
        ax1.set_title('Application pool for top ' + str(number) + ' ' +
                      indicator + ' occupation groups')
        plt.subplots_adjust(bottom=0.1, left=0.3)
        pdf.savefig()
        plt.close()

        plt.figure(figsize=(30, 20))
        ax2 = occupation_rank[["approved_case", "unapproved_case"
                               ]].plot(kind="bar",
                                       alpha=0.7,
                                       stacked=True,
                                       color=["skyblue", "pink"],
                                       figsize=(20, 15))
        ax3 = occupation_rank["approval_rate"].plot(kind="line",
                                                    secondary_y=True,
                                                    style='ko--')
        ax2.set_xticklabels(occupation_rank.index, rotation=45)
        ax3.set_xticklabels(occupation_rank.index, rotation=45)
        ax2.set_title('Approval rate for for top ' + str(number) + ' ' +
                      indicator + ' occupation groups')
        plt.subplots_adjust(bottom=0.3, left=0.1)
        pdf.savefig()
        plt.close()

        plt.figure(figsize=(30, 20))
        ax4 = occupation_rank["average_wage"].plot(
            kind="barh",
            ylim=[40000, 120000],
            color="skyblue",
            figsize=(20, 15),
            title="Average Wage for Top 10 Largest Application Pool Companies")

        ax4.set_title('Average wage for top for top ' + str(number) + ' ' +
                      indicator + ' occupation groups')
        plt.subplots_adjust(bottom=0.1, left=0.3)
        pdf.savefig()
        plt.close()

        print(
            "Further analysis has been saved in your local folder as PDF, please open your folder to check"
        )

    print(
        "please return to the previous dictionary to explore other functions\n"
    )

    return
Пример #46
0
    well = (row, col)
    time_list = []
    value_list = []
    for time, value in sorted(MES[reading_label][plate_id][well].iteritems()):
        time_list.append(time)
        value_list.append(value)

    time_array = array(time_list)
    if len(time_list):
        time_array = (time_array - time_list[0]) / 3600
    return time_array, array(value_list)


MES = CollectData("../data/tecan/PL6-96.tar.gz", number_of_plates=4)
_mkdir('../res/tecan')
pp = PdfPages('../res/tecan/2011-02-06_PL6-96.pdf')

#rcParams['text.usetex'] = True
rcParams['legend.fontsize'] = 12
#rcParams['font.family'] = 'sans-serif'
#rcParams['font.size'] = 8
#rcParams['lines.linewidth'] = 0.3
#rcParams['lines.markersize'] = 2
#rcParams['figure.figsize'] = [5, 10]
#rcParams['figure.subplot.hspace'] = 0.3
#figure()

plot_growth_rate = False
fit_window_size = 1.5  # hours
fit_start_threshold = 0.01
Пример #47
0
simperc = numpy.array(simperc)
simmedfrac = numpy.array(simmedfrac)
simmedabs = numpy.array(simmedabs)

f = open('temp25.pkl', 'rb')
(fit_input, _) = pickle.load(f)

dataperc = numpy.percentile(numpy.sum(fit_input['rho1']**2, axis=1),
                            (50, 50 - 34, 50 + 34))
datamedfrac, datamedabs = meanfrac(fit_input)

asort = numpy.argsort(numpy.append(simperc[:, 0], dataperc[0]))
resort = numpy.argsort(asort)

pp = PdfPages('output25_sim' + tag + '/pvalues_delta2.pdf')
plt.errorbar(
    resort[:-1],
    simperc[:, 0],
    yerr=[simperc[:, 0] - simperc[:, 1], simperc[:, 2] - simperc[:, 0]],
    fmt='.',
    color='blue')
plt.errorbar(resort[-1],
             dataperc[0],
             yerr=[[dataperc[0] - dataperc[1]], [dataperc[2] - dataperc[0]]],
             fmt='.',
             color='red')
plt.xlim([-1, len(resort)])
plt.xlabel('Sorted index')
plt.ylabel(r'$\delta^2$')
plt.savefig(pp, format='pdf')
Пример #48
0
output.write(
    "The first row for each Items(plants) Exported Value in Saudi Arabia with their Year Value"
)
output.write("\n")
#show the first row for each group
print(grouped.first(), file=output)

#Code to draw bar plot for all the Items(plants)
items = []
itemslist = []
#save available data to array based on thier group
for key, item in grouped:
    itemslist.append(grouped.get_group(key))
    items.append(key)
with PdfPages(
        r'/Users/abeer/downloads/Cropsandlivestockproducts_ExportValueCharts.pdf'
) as export_pdf:
    for i in range(len(itemslist)):
        Y = []
        y_values = []
        x_values = []
        output.write("The name of the item(value) Exported Value:  ")
        print(items[i], file=output)
        output.write("\n")
        output.write(
            "The Table that shows the Year and Value of the item(value) Exported Value"
        )
        output.write("\n")
        print(itemslist[i], file=output)
        output.write("\n")
        Y = itemslist[i].to_numpy()
Пример #49
0
def evaluate(corpus):

    N = 100  # must be large to ensure convergence
    w_a_tmp = 0
    w_b_tmp = 0
    # counters that save the number of label predictions given by predict() function
    correct_predictions_a = 0
    correct_predictions_b = 0
    # numpy arrays that store accuracy scores over a number of iterations
    accuracy_a = np.array([])
    accuracy_b = np.array([])
    # numpy arrays that store number of words used for training over a num of iterations
    w_a = np.array([])
    w_b = np.array([])
    # create test set by selecting 10% of all sentences randomly
    np.random.shuffle(corpus)
    corpus_length = len(corpus)
    test_set_size = int(round(corpus_length / 10, 0))
    training_set_size = int(corpus_length - test_set_size)
    training_set, test_set = corpus[:training_set_size], corpus[test_set_size:]
    num_predictions_so_far = 0
    # create instance A of MaxEntModel to be used with train()
    A = MaxEntModel()
    A.initialize(training_set)
    # create instance B of MaxEntModel to be used with train_batch()
    B = MaxEntModel()
    B.initialize(training_set)
    # train A and B
    for i in range(N):
        print(Colors.WARNING + "Iteration: " + Colors.ENDC, i)
        print(Colors.WARNING + "Training A..." + Colors.ENDC)
        A.train(1)
        w_a_tmp += 1
        print(Colors.WARNING + "Training B..." + Colors.ENDC)
        B.train_batch(1, 1)
        w_b_tmp += B.get_num_training_words()

        # execute predict on the test_set
        for sentence in test_set:
            for j in range(len(test_set)):
                word = sentence[j][0]
                label = sentence[j][1]
                if j == 0:
                    prev_label = 'start'
                else:
                    prev_label = sentence[j - 1][1]
                print(Colors.WARNING + "Predicting label for A..." +
                      Colors.ENDC)
                prediction_a = A.predict(word, prev_label)
                print(Colors.WARNING + "Predicting label for B..." +
                      Colors.ENDC)
                prediction_b = B.predict(word, prev_label)
                num_predictions_so_far += 1

                if prediction_a == label:
                    correct_predictions_a += 1

                if prediction_b == label:
                    correct_predictions_b += 1
                # compute accuracy for model A and B
                it_accuracy_a = correct_predictions_a / num_predictions_so_far
                it_accuracy_b = correct_predictions_b / num_predictions_so_far

                accuracy_a = np.append(accuracy_a, it_accuracy_a)
                accuracy_b = np.append(accuracy_b, it_accuracy_b)
                w_a = np.append(w_a, w_a_tmp)
                w_b = np.append(w_b, w_b_tmp)
    # plot the data (accuracy against number of words)
    print(Colors.WARNING + "Plotting data..." + Colors.ENDC)
    chart_a = plt.plot(w_a, accuracy_a)
    chart_b = plt.plot(w_b, accuracy_b)
    plt.setp(chart_a, color='r', linewidth=2.0)
    plt.setp(chart_b, color='b', linewidth=2.0)
    # save the plot on file
    pp = PdfPages('plot.pdf')
    pp.savefig()
    pp.close()
Пример #50
0
    lge1, eff1, eff_err1 = get_eff_area(sys.argv[2])

    print(lge0)
    print(lge1)

    diff = list()
    rel_err0, rel_err1 = list(), list()
    for i in range(len(lge0)):
        d = (eff0[i] - eff1[i]) / math.sqrt(eff_err0[i] * eff_err0[i] +
                                            eff_err1[i] * eff_err1[i])
        diff.append(d)
        rel_err0.append(eff_err0[i] / eff0[i])
        rel_err1.append(eff_err1[i] / eff1[i])

    figName = 'figures/EffArea_testingSplit.pdf'
    with PdfPages(figName) as pdf:
        fig = plt.figure(figsize=(8, 6), tight_layout=True)
        ax = plt.gca()
        ax.set_yscale('log')
        ax.set_xlabel(r'log$_{10}$($E$/TeV)')
        ax.set_ylabel(r'$A_\mathrm{eff}$ (cm$^2$)')

        ax.errorbar(lge0, eff0, yerr=eff_err0, marker='o', linestyle='none')
        ax.errorbar(lge1,
                    eff1,
                    yerr=eff_err1,
                    marker='s',
                    linestyle='none',
                    markersize=15,
                    fillstyle='none')
Пример #51
0
 def energy_spectrum(self,
                     Directory=False,
                     PdfPages=False,
                     sources=False,
                     real_time=False,
                     color=False):
     # energy calib E=a*x + b, x is the channel number
     a = 0.04258
     b = 0.09599
     for i in np.arange(len(sources)):
         fig = plt.figure()
         ax = fig.add_subplot(111)
         data = loadtxt("Source_spectra/" + sources[i] + "/" + sources[i] +
                        "_spectrum_calibrated.txt")
         x1 = np.arange(0, len(data), 1)
         x_calib = a * x1 + b
         y1 = data
         y_rate = y1 / real_time[i]
         y_norm = y1 / np.max(y1)
         plt.step(x_calib,
                  y_norm,
                  where='mid',
                  label=sources[i],
                  linewidth=0.6,
                  color='#B40431',
                  zorder=1.3)  # default farben
         plt.bar(x_calib,
                 y_norm,
                 width=0.0425,
                 linewidth=0.6,
                 color='#F5A9BC',
                 zorder=1.2,
                 label='_nolegend_')
         ax = plt.gca()
         if sources[i] == "Am":
             plt.xlim(0, 70)
             ax.annotate(r'$Am\ {\gamma}_{2,0}$',
                         xy=(60, 0.95),
                         xytext=(-5, 5),
                         ha='right',
                         textcoords='offset points',
                         fontsize=8)
         if sources[i] == "Fe":
             plt.xlim(0, 15)
             ax.annotate(r'${K}_{\alpha}^{Fe}$',
                         xy=(7.1, 0.95),
                         xytext=(-5, 5),
                         ha='right',
                         textcoords='offset points',
                         fontsize=8)
             ax.annotate(r'${K}_{\beta}^{Fe}$',
                         xy=(7.5, 0.15),
                         xytext=(-5, 5),
                         ha='right',
                         textcoords='offset points',
                         fontsize=8)
         if sources[i] == "Cd":
             plt.xlim(0, 60)
             ax.annotate(r'${K}_{\alpha}^{Cd}$',
                         xy=(25.0, 0.95),
                         xytext=(-5, 5),
                         ha='right',
                         textcoords='offset points',
                         fontsize=8)
             ax.annotate(r'${K}_{\beta}^{Cd}$',
                         xy=(28.0, 0.15),
                         xytext=(-5, 5),
                         ha='right',
                         textcoords='offset points',
                         fontsize=8)
         if sources[i] == "Background":
             point_label = [
                 r'${K}_{\alpha}^{Fe}$', r'${K}_{\alpha}^{Ni}$',
                 r'${K}_{\alpha}^{Cu}$', r'${K}_{\alpha}^{Zn}$',
                 r'${K}_{\alpha}^{Ga}$', r'${K}_{\alpha}^{Ag}$',
                 r'${K}_{\alpha}^{ln}$', r'${K}_{\beta}^{Ag}$'
             ]
             y = [0.19, 0.12, 0.1, 0.08, 0.05, 0.95, 0.58, 0.55]
             x = [8.2, 9.1, 10.2, 11.0, 11.5, 24.5, 25.8, 27.5]
             for j, txt in enumerate(point_label):
                 ax.annotate(txt,
                             xy=(x[j], y[j]),
                             xytext=(-5, 5),
                             ha='right',
                             textcoords='offset points',
                             fontsize=8)
             plt.xlim(0, 45)
         ax.set_ylim(bottom=0)
         plt.xlabel('Energy [keV]')
         plt.ylabel('Counts (normalized)')
         #ax.set_xscale('log')
         #ax.set_yscale('log')
         ax.legend(loc='upper right')
         plt.tight_layout()
         plt.savefig("Source_spectra/" + sources[i] + "/" + sources[i] +
                     "_spectrum_calibrated.png",
                     bbox_inches='tight')
         PdfPages.savefig()
Пример #52
0
    ax.grid(True)

    fontP = FontProperties()
    fontP.set_size('small')
    handles, labels = ax.get_legend_handles_labels()
    ax.legend(handles, labels, prop=fontP, loc="upper right")

    print '\n'
    return fig


if __name__ == '__main__':
    ####################################################################
    ## create pdf generator
    ####################################################################
    pdf_pages = PdfPages(sys.argv[1])

    ####################################################################
    ## loop through tests
    ####################################################################
    for bm in BENCHMARKS:
        fig = do_a_benchmark(bm)
        pdf_pages.savefig(fig)

    ####################################################################
    ## done
    ####################################################################
    print 'make pdf...'
    pdf_pages.close()
    print 'done!'
Пример #53
0
if __name__ == '__main__':
    global PdfPages
    Directory = "Amptek_Si_PIN_Detector/"
    sources = ["Background", "Cd", "Am", "Fe"]
    color = [
        '#F5A9BC', '#d62728', '#1f77b4', '#7f7f7f', '#7e0044', "magenta",
        'red', '#33D1FF', "maroon", "yellow", 'lightblue', '#006381', 'grey'
    ]
    point_label = [
        r'${K}_{\alpha}^{Fe}$', r'${K}_{\beta}^{Fe}$', r'${K}_{\alpha}^{Mo}$',
        r'${K}_{\alpha}^{Cd}$', r'${K}_{\beta}^{Cd}$', r'$Am\ {\gamma}_{2,0}$'
    ]
    real_time = [661.16, 60.715000, 2148.976000, 1.011000,
                 6272.115000]  # Number is accumulation time

    PdfPages = PdfPages('Amptel_Spectrum.pdf')
    scan = Amptel_Spectrum()
    a, a_error, b, b_error = scan.channel_energy_calibration(
        PdfPages=PdfPages,
        file=
        'Energy_channel_calibration/channel_energy_calibration_full_range.txt',
        point_label=point_label)
    scan.energy_spectrum(PdfPages=PdfPages,
                         Directory=Directory,
                         sources=sources,
                         real_time=real_time,
                         color=color)
    scan.plot_calibration_charge(PdfPages=PdfPages,
                                 Directory=Directory,
                                 point_label=point_label)
    scan.close()
Пример #54
0
def generateReport(cself, filename="report.pdf", showOnScreen=True):
    figs = list()
    plotter = PlotCollection.PlotCollection("Calibration report")
    offset = 3010

    #Output calibration results in text form.
    sstream = StringIO()
    printResultTxt(cself, sstream)

    text = [line for line in StringIO(sstream.getvalue())]
    linesPerPage = 40

    while True:
        fig = pl.figure(offset)
        offset += 1

        left, width = .05, 1.
        bottom, height = -.05, 1.
        right = left + width
        top = bottom + height

        ax = fig.add_axes([.0, .0, 1., 1.])
        # axes coordinates are 0,0 is bottom left and 1,1 is upper right
        p = patches.Rectangle((left, bottom), width, height, fill=False, transform=ax.transAxes, \
                                 clip_on=False, edgecolor="none")
        ax.add_patch(p)
        pl.axis('off')

        printText = lambda t: ax.text(left, top, t, fontsize=8, \
                                     horizontalalignment='left', verticalalignment='top',\
                                     transform=ax.transAxes)

        if len(text) > linesPerPage:
            printText("".join(text[0:linesPerPage]))
            figs.append(fig)
            text = text[linesPerPage:]
        else:
            printText("".join(text[0:]))
            figs.append(fig)
            break

    #plot imu stuff (if we have imus)
    for iidx, imu in enumerate(cself.ImuList):
        f = pl.figure(offset + iidx)
        plots.plotAccelerations(cself, iidx, fno=f.number, noShow=True)
        plotter.add_figure("imu{0}: accelerations".format(iidx), f)
        figs.append(f)
        offset += len(cself.ImuList)

        f = pl.figure(offset + iidx)
        plots.plotAccelErrorPerAxis(cself, iidx, fno=f.number, noShow=True)
        plotter.add_figure("imu{0}: acceleration error".format(iidx), f)
        figs.append(f)
        offset += len(cself.ImuList)

        f = pl.figure(offset + iidx)
        plots.plotAccelBias(cself, iidx, fno=f.number, noShow=True)
        plotter.add_figure("imu{0}: accelerometer bias".format(iidx), f)
        figs.append(f)
        offset += len(cself.ImuList)

        f = pl.figure(offset + iidx)
        plots.plotAngularVelocities(cself, iidx, fno=f.number, noShow=True)
        plotter.add_figure("imu{0}: angular velocities".format(iidx), f)
        figs.append(f)
        offset += len(cself.ImuList)

        f = pl.figure(offset + iidx)
        plots.plotGyroErrorPerAxis(cself, iidx, fno=f.number, noShow=True)
        plotter.add_figure("imu{0}: angular velocity error".format(iidx), f)
        figs.append(f)
        offset += len(cself.ImuList)

        f = pl.figure(offset + iidx)
        plots.plotAngularVelocityBias(cself, iidx, fno=f.number, noShow=True)
        plotter.add_figure("imu{0}: gyroscope bias".format(iidx), f)
        figs.append(f)
        offset += len(cself.ImuList)

    #plot cam stuff
    if cself.CameraChain:
        for cidx, cam in enumerate(cself.CameraChain.camList):
            f = pl.figure(offset + cidx)
            title = "cam{0}: reprojection errors".format(cidx)
            plots.plotReprojectionScatter(cself,
                                          cidx,
                                          fno=f.number,
                                          noShow=True,
                                          title=title)
            plotter.add_figure(title, f)
            figs.append(f)
            offset += len(cself.CameraChain.camList)

    #write to pdf
    pdf = PdfPages(filename)
    for fig in figs:
        pdf.savefig(fig)
    pdf.close()

    if showOnScreen:
        plotter.show()
Пример #55
0
def imgsum(im,
           obs,
           obs_uncal,
           outname,
           outdir='.',
           title='imgsum',
           commentstr="",
           fontsize=FONTSIZE,
           cfun='afmhot',
           snrcut=0.,
           gainplots=True,
           ampplots=True,
           cphaseplots=True,
           campplots=True,
           ebar=True,
           debias=True,
           cp_uv_min=False,
           sysnoise=0,
           syscnoise=0):
    """Produce an image summary plot for an image and uvfits file.

       Args:
           im (Image): an Image object
           obs (Obsdata): the self-calibrated Obsdata object
           obs_uncal (Obsdata): the original Obsdata object
           outname (str): output pdf file name
        
           outdir (str): directory for output file
           title (str): the pdf file title
           commentstr (str): a comment for the top line of the pdf
           fontsize (float): the font size for text in the sheet
           cfun (float): matplotlib color function

           gainplots (bool): include gain plots or not
           ampplots (bool): include amplitude consistency plots or not
           cphaseplots (bool): include closure phase consistency plots or not
           campplots (bool): include closure amplitude consistency plots or not
           ebar (bool): include error bars or not
           debias (bool): debias visibility amplitudes before computing chisq or not
           cp_uv_min (bool): minimum uv-distance cutoff for including a baseline in closure phase

           sysnoise (float): percent systematic noise added in quadrature
           syscnoise (float): closure phase systematic noise in degrees added in quadrature

           snrcut (dict): a dictionary of snrcut values for each quantity
       Returns:

    """

    plt.rc('font', family='serif')
    plt.rc('text', usetex=True)
    plt.rc('font', size=FONTSIZE)
    plt.rc('axes', titlesize=FONTSIZE)
    plt.rc('axes', labelsize=FONTSIZE)
    plt.rc('xtick', labelsize=FONTSIZE)
    plt.rc('ytick', labelsize=FONTSIZE)
    plt.rc('legend', fontsize=FONTSIZE)
    plt.rc('figure', titlesize=FONTSIZE)

    if fontsize == 0: fontsize = FONTSIZE

    snrcut_dict = {
        key: 0.
        for key in ['vis', 'amp', 'cphase', 'logcamp', 'camp']
    }

    if type(snrcut) is dict:
        for key in snrcut.keys():
            snrcut_dict[key] = snrcut[key]
    else:
        for key in snrcut_dict.keys():
            snrcut_dict[key] = snrcut

    with PdfPages(outname) as pdf:
        titlestr = 'Summary Sheet for %s on MJD %s' % (im.source, im.mjd)

        #pdf metadata
        d = pdf.infodict()
        d['Title'] = title
        d['Author'] = u'EHT Team 1'
        d['Subject'] = titlestr
        d['CreationDate'] = datetime.datetime.today()
        d['ModDate'] = datetime.datetime.today()

        #define the figure
        fig = plt.figure(1, figsize=(18, 28), dpi=200)
        gs = gridspec.GridSpec(6, 4, wspace=WSPACE, hspace=HSPACE)

        #user comments
        if len(commentstr) > 1:
            titlestr = titlestr + '\n' + str(commentstr)
        else:
            titlestr = titlestr

        plt.suptitle(titlestr, y=.9, va='center', fontsize=int(1.2 * fontsize))

        ################################################################################
        print("===========================================")
        print("displaying the image")
        ax = plt.subplot(gs[0:2, 0:2])
        ax.set_title('Submitted Image')
        ax = display_img(im,
                         axis=ax,
                         show=False,
                         has_title=False,
                         cfun=cfun,
                         fontsize=fontsize)

        print("===========================================")
        print("displaying the blurred image")
        ax = plt.subplot(gs[0:2, 2:5])
        ax.set_title('Image blurred to nominal resolution')
        #beamparams=obs_uncal.fit_gauss()
        #fwhm = np.min((np.abs(beamparams[0]),np.abs(beamparams[1])))
        fwhm = obs.res()
        print("blur_FWHM: ", fwhm / RADPERUAS)
        beamparams = [fwhm, fwhm, 0]

        res = obs.res()
        imblur = im.blur_gauss(beamparams, frac=1.0)
        #imblur = im.blur_circ(res)
        ax = display_img(imblur,
                         beamparams=beamparams,
                         axis=ax,
                         show=False,
                         has_title=False,
                         cfun=cfun,
                         fontsize=fontsize)

        ################################################################################
        print("===========================================")
        print("calculating statistics")
        #display the overall chi2
        ax = plt.subplot(gs[2, 0:2])
        ax.set_title('Image statistics')
        #ax.axis('off')
        ax.set_yticks([])
        ax.set_xticks([])

        flux = im.total_flux()

        # SNR ordering
        #obs.reorder_tarr_snr()
        #obs_uncal.reorder_tarr_snr()

        maxset = False
        # compute chi^2
        chi2vis = obs.chisq(im,
                            dtype='vis',
                            ttype='nfft',
                            systematic_noise=sysnoise,
                            maxset=maxset,
                            snrcut=snrcut_dict['vis'])
        chi2amp = obs.chisq(im,
                            dtype='amp',
                            ttype='nfft',
                            systematic_noise=sysnoise,
                            maxset=maxset,
                            snrcut=snrcut_dict['amp'])
        chi2cphase = obs.chisq(im,
                               dtype='cphase',
                               ttype='nfft',
                               systematic_noise=sysnoise,
                               systematic_cphase_noise=syscnoise,
                               maxset=maxset,
                               cp_uv_min=cp_uv_min,
                               snrcut=snrcut_dict['cphase'])
        chi2logcamp = obs.chisq(im,
                                dtype='logcamp',
                                ttype='nfft',
                                systematic_noise=sysnoise,
                                maxset=maxset,
                                snrcut=snrcut_dict['logcamp'])
        chi2camp = obs.chisq(im,
                             dtype='camp',
                             ttype='nfft',
                             systematic_noise=sysnoise,
                             maxset=maxset,
                             snrcut=snrcut_dict['camp'])

        chi2vis_uncal = obs.chisq(im,
                                  dtype='vis',
                                  ttype='nfft',
                                  systematic_noise=0,
                                  maxset=maxset,
                                  snrcut=snrcut_dict['vis'])
        chi2amp_uncal = obs.chisq(im,
                                  dtype='amp',
                                  ttype='nfft',
                                  systematic_noise=0,
                                  maxset=maxset,
                                  snrcut=snrcut_dict['amp'])
        chi2cphase_uncal = obs.chisq(im,
                                     dtype='cphase',
                                     ttype='nfft',
                                     systematic_noise=0,
                                     systematic_cphase_noise=0,
                                     maxset=maxset,
                                     cp_uv_min=cp_uv_min,
                                     snrcut=snrcut_dict['cphase'])
        chi2logcamp_uncal = obs.chisq(im,
                                      dtype='logcamp',
                                      ttype='nfft',
                                      systematic_noise=0,
                                      maxset=maxset,
                                      snrcut=snrcut_dict['logcamp'])
        chi2camp_uncal = obs.chisq(im,
                                   dtype='camp',
                                   ttype='nfft',
                                   systematic_noise=0,
                                   maxset=maxset,
                                   snrcut=snrcut_dict['camp'])

        print("chi^2 vis: %0.2f %0.2f" % (chi2vis, chi2vis_uncal))
        print("chi^2 amp: %0.2f %0.2f" % (chi2amp, chi2amp_uncal))
        print("chi^2 cphase: %0.2f %0.2f" % (chi2cphase, chi2cphase_uncal))
        print("chi^2 logcamp: %0.2f %0.2f" % (chi2logcamp, chi2logcamp_uncal))
        print("chi^2 camp: %0.2f %0.2f" % (chi2logcamp, chi2logcamp_uncal))

        fs = int(1 * fontsize)
        fs2 = int(.8 * fontsize)
        ax.text(.05,
                .9,
                "Source:",
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.05,
                .7,
                "MJD:",
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.05,
                .5,
                "FREQ:",
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.05,
                .3,
                "FOV:",
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.05,
                .1,
                "FLUX:",
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)

        ax.text(.23,
                .9,
                "%s" % im.source,
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.23,
                .7,
                "%i" % im.mjd,
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.23,
                .5,
                "%0.0f GHz" % (im.rf / 1.e9),
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.23,
                .3,
                "%0.1f $\mu$as" % (im.fovx() / RADPERUAS),
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.23,
                .1,
                "%0.2f Jy" % flux,
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)

        ax.text(.5,
                .9,
                "$\chi^2_{vis}$",
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.5,
                .7,
                "$\chi^2_{amp}$",
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.5,
                .5,
                "$\chi^2_{cphase}$",
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.5,
                .3,
                "$\chi^2_{log camp}$",
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.5,
                .1,
                "$\chi^2_{camp}$",
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)

        ax.text(.72,
                .9,
                "%0.2f" % chi2vis,
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.72,
                .7,
                "%0.2f" % chi2amp,
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.72,
                .5,
                "%0.2f" % chi2cphase,
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.72,
                .3,
                "%0.2f" % chi2logcamp,
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.72,
                .1,
                "%0.2f" % chi2camp,
                fontsize=fs,
                ha='left',
                va='center',
                transform=ax.transAxes)

        ax.text(.85,
                .9,
                "(%0.2f)" % chi2vis_uncal,
                fontsize=fs2,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.85,
                .7,
                "(%0.2f)" % chi2amp_uncal,
                fontsize=fs2,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.85,
                .5,
                "(%0.2f)" % chi2cphase_uncal,
                fontsize=fs2,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.85,
                .3,
                "(%0.2f)" % chi2logcamp,
                fontsize=fs2,
                ha='left',
                va='center',
                transform=ax.transAxes)
        ax.text(.85,
                .1,
                "(%0.2f)" % chi2camp_uncal,
                fontsize=fs2,
                ha='left',
                va='center',
                transform=ax.transAxes)

        ################################################################################
        print("===========================================")
        print("calculating cphase statistics")
        #display the closure  phase chi2
        ax = plt.subplot(gs[3:6, 0:2])
        ax.set_title('Closure phase statistics')
        ax.set_yticks([])
        ax.set_xticks([])

        # get closure triangle combinations
        # ANDREW -- hacky, fix this!
        cp = obs.c_phases(mode="all",
                          count="min",
                          uv_min=cp_uv_min,
                          snrcut=snrcut_dict['cphase'])
        n_cphase = len(cp)
        alltris = [(str(cpp['t1']), str(cpp['t2']), str(cpp['t3']))
                   for cpp in cp]
        uniqueclosure_tri = []
        for tri in alltris:
            if tri not in uniqueclosure_tri: uniqueclosure_tri.append(tri)

        # generate data
        obs_model = im.observe_same(obs, add_th_noise=False, ttype='nfft')

        # TODO: check SNR cut
        cphases_obs = obs.c_phases(mode='all',
                                   count='max',
                                   vtype='vis',
                                   uv_min=cp_uv_min,
                                   snrcut=snrcut_dict['cphase'])
        if snrcut_dict['cphase'] > 0:
            cphases_obs_all = obs.c_phases(mode='all',
                                           count='max',
                                           vtype='vis',
                                           uv_min=cp_uv_min,
                                           snrcut=0.)
            cphases_model_all = obs_model.c_phases(mode='all',
                                                   count='max',
                                                   vtype='vis',
                                                   uv_min=cp_uv_min,
                                                   snrcut=0.)
            mask = [cphase in cphases_obs for cphase in cphases_obs_all]
            cphases_model = cphases_model_all[mask]
            print('cphase snr cut', snrcut_dict['cphase'], ' : kept',
                  len(cphases_obs), '/', len(cphases_obs_all))
        else:
            cphases_model = obs_model.c_phases(mode='all',
                                               count='max',
                                               vtype='vis',
                                               uv_min=cp_uv_min,
                                               snrcut=0.)

        #generate chi^2 -- NO SYSTEMATIC NOISES
        ncphase = 0
        cphase_chisq_data = []
        for c in range(0, len(uniqueclosure_tri)):
            cphases_obs_tri = obs.cphase_tri(uniqueclosure_tri[c][0],
                                             uniqueclosure_tri[c][1],
                                             uniqueclosure_tri[c][2],
                                             vtype='vis',
                                             ang_unit='deg',
                                             cphases=cphases_obs)

            if len(cphases_obs_tri) > 0:
                cphases_model_tri = obs_model.cphase_tri(
                    uniqueclosure_tri[c][0],
                    uniqueclosure_tri[c][1],
                    uniqueclosure_tri[c][2],
                    vtype='vis',
                    ang_unit='deg',
                    cphases=cphases_model)

                chisq_tri = 2 * np.sum(
                    (1.0 - np.cos(cphases_obs_tri['cphase'] * DEGREE -
                                  cphases_model_tri['cphase'] * DEGREE)) /
                    ((cphases_obs_tri['sigmacp'] * DEGREE)**2))

                npts = len(cphases_obs_tri)
                data = [
                    uniqueclosure_tri[c][0], uniqueclosure_tri[c][1],
                    uniqueclosure_tri[c][2], npts, chisq_tri
                ]
                cphase_chisq_data.append(data)

        #sort by decreasing chi^2
        idx = np.argsort([data[-1] for data in cphase_chisq_data])
        idx = list(reversed(idx))

        chisqtab = r"\begin{tabular}{ l|l|l|l } \hline Triangle & $N_{tri}$ & $\chi^2_{tri}/N_{tri}$ & $\chi^2_{tri}/N_{tot}$\\ \hline \hline"
        first = True
        for i in range(len(cphase_chisq_data)):
            if i > 30: break
            data = cphase_chisq_data[idx[i]]
            tristr = r"%s-%s-%s" % (data[0], data[1], data[2])
            nstr = r"%i" % data[3]
            chisqstr = r"%0.1f" % data[4]
            rchisqstr = r"%0.1f" % (float(data[4]) / float(data[3]))
            rrchisqstr = r"%0.3f" % (float(data[4]) / float(n_cphase))
            if first:
                chisqtab += r" " + tristr + " & " + nstr + " & " + rchisqstr + " & " + rrchisqstr
                first = False
            else:
                chisqtab += r" \\" + tristr + " & " + nstr + " & " + rchisqstr + " & " + rrchisqstr
        chisqtab += r" \end{tabular}"

        ax.text(0.5,
                .975,
                chisqtab,
                ha="center",
                va="top",
                transform=ax.transAxes,
                size=fontsize)

        ################################################################################
        print("===========================================")
        print("calculating camp statistics")
        #display the log closure amplitude chi2
        ax = plt.subplot(gs[2:6, 2::])
        ax.set_title('Log Closure amplitude statistics')
        #ax.axis('off')
        ax.set_yticks([])
        ax.set_xticks([])

        # get closure amplitude combinations
        # TODO -- hacky, fix this!
        cp = obs.c_amplitudes(mode="all",
                              count="min",
                              ctype='logcamp',
                              debias=debias)
        n_camps = len(cp)
        allquads = [(str(cpp['t1']), str(cpp['t2']), str(cpp['t3']),
                     str(cpp['t4'])) for cpp in cp]
        uniqueclosure_quad = []
        for quad in allquads:
            if quad not in uniqueclosure_quad:
                uniqueclosure_quad.append(quad)

        # generate data
        # TODO: check SNR cut
        camps_obs = obs.c_amplitudes(mode='all',
                                     count='max',
                                     ctype='logcamp',
                                     debias=debias,
                                     snrcut=snrcut_dict['logcamp'])
        if snrcut_dict['logcamp'] > 0:
            camps_obs_all = obs.c_amplitudes(mode='all',
                                             count='max',
                                             ctype='logcamp',
                                             debias=debias,
                                             snrcut=0.)
            camps_model_all = obs_model.c_amplitudes(mode='all',
                                                     count='max',
                                                     ctype='logcamp',
                                                     debias=False,
                                                     snrcut=0.)
            mask = [
                camp['camp'] in camps_obs['camp'] for camp in camps_obs_all
            ]
            camps_model = camps_model_all[mask]
            print('closure amp snrcut', snrcut_dict['logcamp'], ': kept',
                  len(camps_obs), '/', len(camps_obs_all))
        else:
            camps_model = obs_model.c_amplitudes(mode='all',
                                                 count='max',
                                                 ctype='logcamp',
                                                 debias=False,
                                                 snrcut=0.)

        #generate chi2 -- NO SYSTEMATIC NOISES
        ncamp = 0
        camp_chisq_data = []
        for c in range(0, len(uniqueclosure_quad)):
            camps_obs_quad = obs.camp_quad(uniqueclosure_quad[c][0],
                                           uniqueclosure_quad[c][1],
                                           uniqueclosure_quad[c][2],
                                           uniqueclosure_quad[c][3],
                                           vtype='vis',
                                           camps=camps_obs,
                                           ctype='logcamp')

            if len(camps_obs_quad) > 0:
                camps_model_quad = obs.camp_quad(uniqueclosure_quad[c][0],
                                                 uniqueclosure_quad[c][1],
                                                 uniqueclosure_quad[c][2],
                                                 uniqueclosure_quad[c][3],
                                                 vtype='vis',
                                                 camps=camps_model,
                                                 ctype='logcamp')

                chisq_quad = np.sum(
                    np.abs(
                        (camps_obs_quad['camp'] - camps_model_quad['camp']) /
                        camps_obs_quad['sigmaca'])**2)
                npts = len(camps_obs_quad)

                data = (uniqueclosure_quad[c][0], uniqueclosure_quad[c][1],
                        uniqueclosure_quad[c][2], uniqueclosure_quad[c][3],
                        npts, chisq_quad)
                camp_chisq_data.append(data)

        #sort by decreasing chi^2
        idx = np.argsort([data[-1] for data in camp_chisq_data])
        idx = list(reversed(idx))

        chisqtab = r"\begin{tabular}{ l|l|l|l } \hline Quadrangle & $N_{quad}$ & $\chi^2_{quad}/N_{quad}$ & $\chi^2_{quad}/N_{tot}$ \\ \hline \hline"
        for i in range(len(camp_chisq_data)):
            if i > 45: break
            data = camp_chisq_data[idx[i]]
            tristr = r"%s-%s-%s-%s" % (data[0], data[1], data[2], data[3])
            nstr = r"%i" % data[4]
            chisqstr = r"%0.1f" % data[5]
            rchisqstr = r"%0.1f" % (data[5] / float(data[4]))
            rrchisqstr = r"%0.3f" % (data[5] / float(n_camps))
            if i == 0:
                chisqtab += r" " + tristr + " & " + nstr + " & " + rchisqstr + " & " + rrchisqstr
            else:
                chisqtab += r" \\" + tristr + " & " + nstr + " & " + rchisqstr + " & " + rrchisqstr

        chisqtab += r" \end{tabular}"

        ax.text(0.5,
                .975,
                chisqtab,
                ha="center",
                va="top",
                transform=ax.transAxes,
                size=fontsize)

        #save the first page of the plot
        print('saving pdf page 1')
        pdf.savefig(pad_inches=MARGINS, bbox_inches='tight')
        plt.close()

        ################################################################################
        #plot the vis amps
        fig = plt.figure(2, figsize=(18, 28), dpi=200)
        gs = gridspec.GridSpec(6, 4, wspace=WSPACE, hspace=HSPACE)

        print("===========================================")
        print("plotting vis amps")
        ax = plt.subplot(gs[0:2, 0:2])
        obs_tmp = obs_model.copy()
        obs_tmp.data['sigma'] *= 0.
        ax = plotall_obs_compare([obs, obs_tmp],
                                 'uvdist',
                                 'amp',
                                 axis=ax,
                                 legend=False,
                                 clist=['k', SCOLORS[1]],
                                 ttype='nfft',
                                 show=False,
                                 debias=debias,
                                 snrcut=snrcut_dict['amp'],
                                 ebar=ebar,
                                 markersize=MARKERSIZE)
        #modify the labels
        ax.set_title('Calibrated Visiblity Amplitudes')
        ax.set_xlabel('u-v distance (G$\lambda$)')
        ax.set_xlim([0, 1.e10])
        ax.set_xticks([0, 2.e9, 4.e9, 6.e9, 8.e9, 10.e9])
        ax.set_xticklabels(["0", "2", "4", "6", "8", "10"])
        ax.set_xticks([1.e9, 3.e9, 5.e9, 7.e9, 9.e9], minor=True)
        ax.set_xticklabels([], minor=True)

        ax.set_ylabel('Amplitude (Jy)')
        ax.set_ylim([0, 1.2 * flux])
        yticks_maj = np.array([0, .2, .4, .6, .8, 1]) * flux
        ax.set_yticks(yticks_maj)
        ax.set_yticklabels(["%0.2f" % fl for fl in yticks_maj])
        yticks_min = np.array([.1, .3, .5, .7, .9]) * flux
        ax.set_yticks(yticks_min, minor=True)
        ax.set_yticklabels([], minor=True)

        ################################################################################3
        #plot the caltable gains
        if gainplots:
            print("===========================================")
            print("plotting gains")
            ax2 = plt.subplot(gs[0:2, 2:6])
            obs_tmp = obs_uncal.copy()
            for i in range(1):
                ct = selfcal(obs_tmp,
                             im,
                             method='amp',
                             ttype='nfft',
                             caltable=True,
                             gain_tol=.2,
                             processes=PROCESSES)
                ct = ct.pad_scans()
                obs_tmp = ct.applycal(obs_tmp,
                                      interp='nearest',
                                      extrapolate=True)  #apply caltable
                if np.any(np.isnan(obs_tmp.data['vis'])):
                    print("Warning: NaN in applycal vis table!")
                    break
                if i > 0:
                    ct_out = ct_out.merge([ct])
                else:
                    ct_out = ct

            ax2 = ct_out.plot_gains('all',
                                    rangey=[.1, 10],
                                    yscale='log',
                                    axis=ax2,
                                    legend=True,
                                    show=False)

            #median gains
            ax = plt.subplot(gs[3:6, 2:5])
            ax.set_title('Station gain statistics')
            ax.set_yticks([])
            ax.set_xticks([])

            gain_data = []
            for station in ct_out.tarr['site']:
                try:
                    gain = np.median(np.abs(ct_out.data[station]['lscale']))
                except:
                    continue
                pdiff = np.abs(gain - 1) * 100
                data = (station, gain, pdiff)
                gain_data.append(data)

            #sort by decreasing chi^2
            idx = np.argsort([data[-1] for data in gain_data])
            idx = list(reversed(idx))

            chisqtab = r"\begin{tabular}{ l|l|l } \hline Site & Median Gain & Percent diff. \\ \hline \hline"
            for i in range(len(gain_data)):
                if i > 45: break
                data = gain_data[idx[i]]
                sitestr = r"%s" % (data[0])
                gstr = r"%0.2f" % data[1]
                pstr = r"%0.0f" % data[2]
                if i == 0:
                    chisqtab += r" " + sitestr + " & " + gstr + " & " + pstr
                else:
                    chisqtab += r" \\" + sitestr + " & " + gstr + " & " + pstr

            chisqtab += r" \end{tabular}"
            ax.text(0.5,
                    .975,
                    chisqtab,
                    ha="center",
                    va="top",
                    transform=ax.transAxes,
                    size=fontsize)

################################################################################3
#baseline amplitude chi2
        print("===========================================")
        print("baseline vis amps chisq")
        ax = plt.subplot(gs[3:6, 0:2])
        ax.set_title('Visibility amplitude statistics')
        ax.set_yticks([])
        ax.set_xticks([])

        bl_unpk = obs.unpack(['t1', 't2'], debias=debias)
        n_bl = len(bl_unpk)
        allbl = [(str(bl['t1']), str(bl['t2'])) for bl in bl_unpk]
        uniquebl = []
        for bl in allbl:
            if bl not in uniquebl:
                uniquebl.append(bl)

        #generate chi2 -- NO SYSTEMATIC NOISES
        ncamp = 0
        bl_chisq_data = []
        for ii in range(0, len(uniquebl)):
            bl = uniquebl[ii]

            amps_bl = obs.unpack_bl(bl[0],
                                    bl[1], ['amp', 'sigma'],
                                    debias=debias)
            if len(amps_bl) > 0:

                amps_bl_model = obs_model.unpack_bl(bl[0],
                                                    bl[1], ['amp', 'sigma'],
                                                    debias=False)

                if snrcut_dict['amp'] > 0:
                    amask = amps_bl['amp'] / amps_bl['sigma'] > snrcut_dict[
                        'amp']
                    amps_bl = amps_bl[amask]
                    amps_bl_model = amps_bl_model[amask]

                chisq_bl = np.sum(
                    np.abs((amps_bl['amp'] - amps_bl_model['amp']) /
                           amps_bl['sigma'])**2)
                npts = len(amps_bl_model)

                data = (bl[0], bl[1], npts, chisq_bl)
                bl_chisq_data.append(data)

        #sort by decreasing chi^2
        idx = np.argsort([data[-1] for data in bl_chisq_data])
        idx = list(reversed(idx))

        chisqtab = r"\begin{tabular}{ l|l|l|l } \hline Baseline & $N_{amp}$ & $\chi^2_{amp}/N_{amp}$ & $\chi^2_{amp}/N_{total}$ \\ \hline \hline"
        for i in range(len(bl_chisq_data)):
            if i > 45: break
            data = bl_chisq_data[idx[i]]
            tristr = r"%s-%s" % (data[0], data[1])
            nstr = r"%i" % data[2]
            chisqstr = r"%0.1f" % data[3]
            rchisqstr = r"%0.1f" % (data[3] / float(data[2]))
            rrchisqstr = r"%0.3f" % (data[3] / float(n_bl))
            if i == 0:
                chisqtab += r" " + tristr + " & " + nstr + " & " + rchisqstr + " & " + rrchisqstr
            else:
                chisqtab += r" \\" + tristr + " & " + nstr + " & " + rchisqstr + " & " + rrchisqstr

        chisqtab += r" \end{tabular}"

        ax.text(0.5,
                .975,
                chisqtab,
                ha="center",
                va="top",
                transform=ax.transAxes,
                size=fontsize)

        #save the first page of the plot
        print('saving pdf page 2')
        #plt.tight_layout()
        #plt.subplots_adjust(wspace=1,hspace=1)
        #plt.savefig(outname, pad_inches=MARGINS,bbox_inches='tight')
        pdf.savefig(pad_inches=MARGINS, bbox_inches='tight')
        plt.close()

        ################################################################################
        #plot the visibility amplitudes
        page = 3
        if ampplots:
            print("===========================================")
            print("plotting amplitudes")
            fig = plt.figure(3, figsize=(18, 28), dpi=200)
            plt.suptitle("Amplitude Plots",
                         y=.9,
                         va='center',
                         fontsize=int(1.2 * fontsize))
            gs = gridspec.GridSpec(6, 4, wspace=WSPACE, hspace=HSPACE)
            i = 0
            j = 0
            switch = False

            obs_model.data['sigma'] *= 0
            amax = 1.1 * np.max(np.abs(np.abs(obs_model.data['vis'])))
            obs_all = [obs, obs_model]
            for bl in uniquebl:
                ax = plt.subplot(gs[2 * i:2 * (i + 1), 2 * j:2 * (j + 1)])
                ax = plot_bl_obs_compare(obs_all,
                                         bl[0],
                                         bl[1],
                                         'amp',
                                         rangey=[0, amax],
                                         markersize=MARKERSIZE,
                                         debias=debias,
                                         snrcut=snrcut_dict['amp'],
                                         axis=ax,
                                         legend=False,
                                         clist=['k', SCOLORS[1]],
                                         ttype='nfft',
                                         show=False,
                                         ebar=ebar)
                if ax is None: continue
                if switch:
                    i += 1
                    j = 0
                    switch = False
                else:
                    j = 1
                    switch = True

                ax.set_xlabel('')

                if i == 3:
                    print('saving pdf page %i' % page)
                    page += 1
                    pdf.savefig(pad_inches=MARGINS, bbox_inches='tight')
                    plt.close()
                    fig = plt.figure(3, figsize=(18, 28), dpi=200)
                    gs = gridspec.GridSpec(6, 4, wspace=WSPACE, hspace=HSPACE)
                    i = 0
                    j = 0
                    switch = False

            print('saving pdf page %i' % page)
            page += 1
            pdf.savefig(pad_inches=MARGINS, bbox_inches='tight')
            plt.close()

################################################################################
#plot the closure phases
        if cphaseplots:
            print("===========================================")
            print("plotting closure phases")
            fig = plt.figure(3, figsize=(18, 28), dpi=200)
            plt.suptitle("Closure Phase Plots",
                         y=.9,
                         va='center',
                         fontsize=int(1.2 * fontsize))
            gs = gridspec.GridSpec(6, 4, wspace=WSPACE, hspace=HSPACE)
            i = 0
            j = 0
            switch = False
            obs_all = [obs, obs_model]
            cphases_model['sigmacp'] *= 0
            cphases_all = [cphases_obs, cphases_model]
            for tri in uniqueclosure_tri:

                ax = plt.subplot(gs[2 * i:2 * (i + 1), 2 * j:2 * (j + 1)])
                ax = plot_cphase_obs_compare(obs_all,
                                             tri[0],
                                             tri[1],
                                             tri[2],
                                             rangey=[-185, 185],
                                             cphases=cphases_all,
                                             markersize=MARKERSIZE,
                                             axis=ax,
                                             legend=False,
                                             clist=['k', SCOLORS[1]],
                                             ttype='nfft',
                                             show=False,
                                             ebar=ebar)
                if ax is None: continue
                if switch:
                    i += 1
                    j = 0
                    switch = False
                else:
                    j = 1
                    switch = True

                ax.set_xlabel('')

                if i == 3:
                    print('saving pdf page %i' % page)
                    page += 1
                    pdf.savefig(pad_inches=MARGINS, bbox_inches='tight')
                    plt.close()
                    fig = plt.figure(3, figsize=(18, 28), dpi=200)
                    gs = gridspec.GridSpec(6, 4, wspace=WSPACE, hspace=HSPACE)
                    i = 0
                    j = 0
                    switch = False
            print('saving pdf page %i' % page)
            page += 1
            pdf.savefig(pad_inches=MARGINS, bbox_inches='tight')
            plt.close()


################################################################################
#plot the log closure amps
        if campplots:
            print("===========================================")
            print("plotting closure amplitudes")
            fig = plt.figure(3, figsize=(18, 28), dpi=200)
            plt.suptitle("Closure Amplitude Plots",
                         y=.9,
                         va='center',
                         fontsize=int(1.2 * fontsize))
            gs = gridspec.GridSpec(6, 4, wspace=WSPACE, hspace=HSPACE)
            i = 0
            j = 0
            switch = False
            obs_all = [obs, obs_model]
            camps_model['sigmaca'] *= 0
            camps_all = [camps_obs, camps_model]
            cmax = 1.1 * np.max(np.abs(camps_obs['camp']))
            for quad in uniqueclosure_quad:
                ax = plt.subplot(gs[2 * i:2 * (i + 1), 2 * j:2 * (j + 1)])
                ax = plot_camp_obs_compare(obs_all,
                                           quad[0],
                                           quad[1],
                                           quad[2],
                                           quad[3],
                                           markersize=MARKERSIZE,
                                           ctype='logcamp',
                                           rangey=[-cmax, cmax],
                                           camps=camps_all,
                                           axis=ax,
                                           legend=False,
                                           clist=['k', SCOLORS[1]],
                                           ttype='nfft',
                                           show=False,
                                           ebar=ebar)
                if ax is None: continue
                if switch:
                    i += 1
                    j = 0
                    switch = False
                else:
                    j = 1
                    switch = True

                ax.set_xlabel('')

                if i == 3:
                    print('saving pdf page %i' % page)
                    page += 1
                    pdf.savefig(pad_inches=MARGINS, bbox_inches='tight')
                    plt.close()
                    fig = plt.figure(3, figsize=(18, 28), dpi=200)
                    gs = gridspec.GridSpec(6, 4, wspace=WSPACE, hspace=HSPACE)
                    i = 0
                    j = 0
                    switch = False
            print('saving pdf page %i' % page)
            page += 1
            pdf.savefig(pad_inches=MARGINS, bbox_inches='tight')
            plt.close()
Пример #56
0
 def close(self):
     PdfPages.close()
Пример #57
0
import sys
from numpy import *
from numpy.random import *
import matplotlib.pyplot as plt
import scipy.stats as st

from matplotlib.backends.backend_pdf import PdfPages
pp = PdfPages("output-histogram.pdf")

import matplotlib
#font = {'family' : 'normal',
#        'weight' : 'bold',
#        'size'   : 10}
#matplotlib.rc('font', **font)
matplotlib.rc('xtick', labelsize=2)
matplotlib.rc('ytick', labelsize=2)

sys.path.append("/home/cbarnes/dev/cuda-sim-area/cuda-sim/trunk/")
import cudasim
import cudasim.EulerMaruyama as EulerMaruyama
import cudasim.Gillespie as Gillespie
import cudasim.Lsoda as Lsoda


def print_results(result, timepoints, outfile, sx=-1, model=0):
    out = open(outfile, 'w')
    print >> out, 0, 0, 0, 0,
    for i in range(len(timepoints)):
        print >> out, timepoints[i],
    print >> out, ""
    # loop over threads
Пример #58
0
        model_name = [sys.argv[2]]
    for s in model_name:
        print('using model ' + version + '_' + s)

network_xml = '/Users/leahanderson/Code/Lanksershim_Network/Lshim_' + version + '_' + model_name[
    0] + '.xml'
output_prefix = {}
for mt in model_name:
    output_prefix[
        mt] = '/Users/leahanderson/Code/Lanksershim_Network/output/' + version + '_' + mt
dataset = '/Users/leahanderson/Code/datasets_external/lankershim'
time_aggregation = 5

sys.path.append(dataset)

pp = PdfPages('densities_' + version + '.pdf')
import network_properties as netprops
intersections = netprops.intersection_ids
links = netprops.link_ids
initial_time = 0
final_time = (netprops.time_range[1] - netprops.time_range[0]) / 1000
time_bounds = range(initial_time, final_time, time_aggregation)
network = load_network(network_xml)

link_densities = {}
with open(dataset + '/densities_links.csv', 'rb') as csvfile:
    reader = csv.reader(csvfile, delimiter=',', quotechar='|')
    for row in reader:
        link = row[0] + row[1]
        movement = row[2]
        denlist = [int(d) for d in row[3::]]
Пример #59
0
df["year"] = np.floor(1960 + df.SALE_DATE / 365.25)

df = df.loc[df.SALE_AMOUNT >= 50000, :]
df = df.loc[df.SALE_AMOUNT <= 1000000, :]

df["log_SALE_AMOUNT"] = np.log2(df.SALE_AMOUNT)

df = df.loc[df.SALE_DATE >= 365.25 * 20]
df["age"] = df.year - df.YEAR_BUILT

fml = "log_SALE_AMOUNT ~ bs(year, 6) * bs(age, 6) + bs(year, 6) * (bs(LAND_SQUARE_FOOTAGE, 6) + bs(LIVING_SQUARE_FEET, 6) + bs(age, 6))"
model = sm.OLS.from_formula(fml, df)
result = model.fit()

pdf = PdfPages("salesprice_lm.pdf")

plt.clf()
for age in 0, 10, 20, 40:
    pred, cb, fvals = predict_functional(result,
                                         "year",
                                         values={"age": age},
                                         summaries={
                                             "LAND_SQUARE_FOOTAGE": np.median,
                                             "LIVING_SQUARE_FEET": np.median
                                         })
    plt.plot(fvals, pred, '-', label=str(age))

plt.grid(True)
ha, lb = plt.gca().get_legend_handles_labels()
leg = plt.figlegend(ha, lb, "center right")
Пример #60
0
ax.set_xlabel('PC1', fontsize=12, fontweight='bold')
ax.set_ylabel('PC2', fontsize=12, fontweight='bold')
fontsize = 12
ax = gca()
for tick in ax.xaxis.get_major_ticks():
    tick.label1.set_fontsize(fontsize)
    tick.label1.set_fontweight('bold')
for tick in ax.yaxis.get_major_ticks():
    tick.label1.set_fontsize(fontsize)
    tick.label1.set_fontweight('bold')

labels = df.Linage.values
for label, x, y in zip(labels, X_r[:, 0], X_r[:, 1]):
    plt.annotate(label, xy=(x, y), textcoords='data', fontsize=7)

pp = PdfPages('ancestral_pca.pdf')
plt.savefig(pp, format='pdf')
pp.close()

########################### PCA Variance  ##################################

# Select all 64 principal components
pca = PCA(92)  # project from 64 to 2 dimensions
X_r = pca.fit_transform(scale(X, with_std=False))

# Obtain the explained variance for each principal component
varianceExp = pca.explained_variance_ratio_
# Compute the total sum of variance
totVarExp = np.cumsum(
    np.round(pca.explained_variance_ratio_, decimals=4) * 100)