def plot(outright_index, fly_index, hedged_index):
    date = m["DateTime"].tolist()
    outright_prices = m[outright_index].values.tolist()
    fly_prices = m[fly_index].values.tolist()
    hedged_prices = m[hedged_index].values.tolist()
    upper_band = (m[hedged_index+"_mean"]+EntryStd*m[hedged_index+"_std"]).values.tolist()
    lower_band = (m[hedged_index+"_mean"]-EntryStd*m[hedged_index+"_std"]).values.tolist()
    buy_dates = [x[0] for x in trade_recorder[hedged_index].trades if x[2]>0]
    buy_prices = [x[1] for x in trade_recorder[hedged_index].trades if x[2]>0]
    sell_dates = [x[0] for x in trade_recorder[hedged_index].trades if x[2]<0]
    sell_prices = [x[1] for x in trade_recorder[hedged_index].trades if x[2]<0]
    
    fig, (ax1, ax2, ax3) = plt.subplots(3, sharex = True)
    mondays = WeekdayLocator(MONDAY)
    mondays.MAXTICKS = 2000
    alldays = DayLocator()              # minor ticks on the days
    alldays.MAXTICKS = 2000
    weekFormatter = DateFormatter('%b %d')  # e.g., Jan 12
    dayFormatter = DateFormatter('%d')      # e.g., 12
    ax1.xaxis.set_major_locator(mondays)
    ax1.xaxis.set_minor_locator(alldays)
    ax1.xaxis.set_major_formatter(weekFormatter)
    
    ax1.plot(date, outright_prices)
    ax2.plot(date, fly_prices)
    ax3.plot(date, hedged_prices)
    ax3.plot(date, upper_band, color='k')
    ax3.plot(date, lower_band, color='k')
    ax3.plot(buy_dates, buy_prices, "^", markersize = 5, color='m')
    ax3.plot(sell_dates, sell_prices, "v", markersize = 5, color='k')
    
    ax1.xaxis_date()
    ax1.autoscale_view()
Пример #2
0
 def plot_contrast(self,moneyrecord1,moneyrecord2,date_ls,startdate,enddate):
     startdate=self.datetransfer(startdate)
     date_ls_change=[]
     for i in date_ls:
         if int(i)>=int(startdate) and int(i)<=int(enddate):
             date_ls_change.append(i)
     mondays = WeekdayLocator(MONDAY)
     months = MonthLocator(range(1, 13), bymonthday=1, interval=3)
     monthsFmt = DateFormatter("%b '%y")
     print(date_ls_change)
     #print(date_ls)
     date = [str(e) for e in date_ls_change]
     date_ls = [datetime.datetime.strptime(d,'%Y%m%d').date() for d in date]
     algo_pv=moneyrecord1['money'].tolist()
     print(algo_pv)
     bench_pv=moneyrecord2['moneybenchmark'].tolist()
     fig, ax = plt.subplots()
     plt.gca().set_color_cycle(['blue', 'red'])
     ax.plot_date(date_ls, algo_pv,'-')
     ax.plot_date(date_ls, bench_pv,'-')
     months.MAXTICKS=5000
     mondays.MAXTICKS=5000
     ax.xaxis.set_major_locator(months)
     ax.xaxis.set_major_formatter(monthsFmt)
     ax.xaxis.set_minor_locator(mondays)
     ax.autoscale_view()
     ax.grid(True)
     fig.autofmt_xdate()
     plt.title('P&L')
     plt.legend(['strategy', 'benchmark'], loc='upper left')
     plt.show()
    def plot_trade(self, symbol, init_index = None, end_index=None, PnL=False, ATR=False):
        if init_index == None:
            init_index = 0
        init_date = b.bars[symbol][init_index]["D"]
        if end_index == None:
            end_index = len(b.bars[symbol])
        end_date = b.bars[symbol][end_index-1]["D"]
        mondays = WeekdayLocator(MONDAY)
        mondays.MAXTICKS = 2000
        alldays = DayLocator()              # minor ticks on the days
        alldays.MAXTICKS = 2000
        weekFormatter = DateFormatter('%b %d')  # e.g., Jan 12
        dayFormatter = DateFormatter('%d')      # e.g., 12
        history = [(date2num(x["D"]), x["O"], x["H"], x["L"], x["C"]) for x in b.bars[symbol][init_index:end_index]]
        if PnL or ATR:
            fig, (ax, ax2) = plt.subplots(2, sharex = True)
        else:
            fig, ax = plt.subplots()
        ax.xaxis.set_major_locator(mondays)
        ax.xaxis.set_minor_locator(alldays)
        ax.xaxis.set_major_formatter(weekFormatter)
        candlestick_ohlc(ax, history)
        buys = [(x["Date"], x["Price"]) for x in self.trades[symbol] if (x["Lots"] > 0 and x["Date"] > init_date and x["Date"]<end_date) ]
        buy_dates, buy_values = zip(*buys)
        ax.plot(buy_dates, buy_values, "^", markersize = 5, color='m')
        sells = [(x["Date"], x["Price"]) for x in self.trades[symbol] if (x["Lots"] < 0 and x["Date"] > init_date and x["Date"]<end_date)]
        sell_dates, sell_values = zip(*sells)
        ax.plot(sell_dates, sell_values, "v", markersize = 5, color='k')
        ax.xaxis_date()
        ax.autoscale_view()
        if PnL:
            equity_history = [(date, record["equity"], record["drawdown"]) for date, record in self.history.items()]
            dates, values, drawdowns = zip(*equity_history)
            ax2 = fig.add_subplot(212)
            ax2.plot(dates, values, 'b-')
        elif ATR:
            equity_history = [(x["D"], x["ATR"]) for x in self.bars[symbol][init_index:end_index]]
            dates, values = zip(*equity_history)
            ax2 = fig.add_subplot(212)
            ax2.plot(dates, values, 'b-')
            
##        ax3 = ax2.twinx()
##        ax3.plot(dates, drawdowns, 'r-')
        
        plt.show()
Пример #4
0
    def plot_alpha(self,alpha,date_ls,startdate,enddate):
        startdate=self.datetransfer(startdate)
        date_ls_change=[]
        for i in date_ls:
            if int(i)>=int(startdate) and int(i)<=int(enddate):
                date_ls_change.append(i)
        mondays = WeekdayLocator(MONDAY)
        months = MonthLocator(range(1, 13), bymonthday=1, interval=3)
        monthsFmt = DateFormatter("%b '%y")
        #print(date_ls)
        date = [str(e) for e in date_ls_change]
        date_ls = [datetime.datetime.strptime(d,'%Y%m%d').date() for d in date]
        algo_pv=alpha['alpha'].tolist()
        #print(algo_pv)
        fig, ax = plt.subplots()
        plt.gca().set_color_cycle(['blue', 'red'])
        ax.plot_date(date_ls, algo_pv,'-')
        months.MAXTICKS=5000
        mondays.MAXTICKS=5000
        ax.xaxis.set_major_locator(months)
        ax.xaxis.set_major_formatter(monthsFmt)
        ax.xaxis.set_minor_locator(mondays)
        ax.autoscale_view()
        ax.grid(True)
        fig.autofmt_xdate()
        plt.title('Alpha')
        plt.legend(['alpha'], loc='upper left')
        plt.show()                            
                    
        


#KJ_profit_df=pd.DataFrame(columns=[i/10 for i in range(1,121)])
#for K in list_K:
    #for J in list_J:
        #KJ=B(cash,account,startdate,enddate,K,J)
        #KJ_total_portfolio=KJ.test(startdate,enddate,K,J,cash)
        #KJ_profit_df.loc[10*J-1,K]=KJ_total_portfolio

#KJ_profit_df.to_csv('KJ_finalprofit.csv')     
data = sbi.copy()
data.columns
data.dtypes
data.head()
data.index
data[['Open', 'High', 'Low', 'Close']]
data[['Open', 'High', 'Low', 'Close', 'WAP']].plot()
data[['Open', 'Close']].plot()
#%%%
#Libraries
#pip install mpl_finance
from mpl_finance import candlestick_ohlc
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
from matplotlib.dates import MONDAY, DateFormatter, DayLocator, WeekdayLocator
mondays = WeekdayLocator(MONDAY)  # major ticks on the mondays
alldays = DayLocator()  # minor ticks on the days
weekFormatter = DateFormatter('%b %d')  # e.g., Jan 12
dayFormatter = DateFormatter('%d')  # e.g., 12

#prepare OHLC
sbi.head()
data3 = sbi[['Open', 'High', 'Low', 'Close']].copy()
data3.head()
date1 = "2019-8-1"
date2 = "2019-8-30"
data3b = data3[(data3.index >= date1) & (data3.index <= date2)]
data3b
#%%% Plots
#run together till plt.show
fig, ax = plt.subplots(figsize=(10, 8))
Пример #6
0
def pandas_candlestick_ohlc(dat, stick = "day", otherseries = None):
    """
    :param dat: pandas DataFrame object with datetime64 index, and float columns "Open", "High", "Low", and "Close", likely created via DataReader from "yahoo"
    :param stick: A string or number indicating the period of time covered by a single candlestick. Valid string inputs include "day", "week", "month", and "year", ("day" default), and any numeric input indicates the number of trading days included in a period
    :param otherseries: An iterable that will be coerced into a list, containing the columns of dat that hold other series to be plotted as lines
 
    This will show a Japanese candlestick plot for stock data stored in dat, also plotting other series if passed.
    """
    mondays = WeekdayLocator(MONDAY)        # major ticks on the mondays
    alldays = DayLocator()              # minor ticks on the days
    #dayFormatter = DateFormatter('%d')      # e.g., 12
 
    # Create a new DataFrame which includes OHLC data for each period specified by stick input
    transdat = dat.loc[:,["Open", "High", "Low", "Close"]]
    if (type(stick) == str):
        if stick == "day":
            plotdat = transdat
            stick = 1 # Used for plotting
        elif stick in ["week", "month", "year"]:
            if stick == "week":
                transdat["week"] = pd.to_datetime(transdat.index).map(lambda x: x.isocalendar()[1]) # Identify weeks
            elif stick == "month":
                transdat["month"] = pd.to_datetime(transdat.index).map(lambda x: x.month) # Identify months
            transdat["year"] = pd.to_datetime(transdat.index).map(lambda x: x.isocalendar()[0]) # Identify years
            grouped = transdat.groupby(list(set(["year",stick]))) # Group by year and other appropriate variable
            plotdat = pd.DataFrame({"Open": [], "High": [], "Low": [], "Close": []}) # Create empty data frame containing what will be plotted
            for name, group in grouped:
                plotdat = plotdat.append(pd.DataFrame({"Open": group.iloc[0,0],
                                            "High": max(group.High),
                                            "Low": min(group.Low),
                                            "Close": group.iloc[-1,3]},
                                           index = [group.index[0]]))
            if stick == "week": stick = 5
            elif stick == "month": stick = 30
            elif stick == "year": stick = 365
 
    elif (type(stick) == int and stick >= 1):
        transdat["stick"] = [np.floor(i / stick) for i in range(len(transdat.index))]
        grouped = transdat.groupby("stick")
        plotdat = pd.DataFrame({"Open": [], "High": [], "Low": [], "Close": []}) # Create empty data frame containing what will be plotted
        for name, group in grouped:
            plotdat = plotdat.append(pd.DataFrame({"Open": group.iloc[0,0],
                                        "High": max(group.High),
                                        "Low": min(group.Low),
                                        "Close": group.iloc[-1,3]},
                                       index = [group.index[0]]))
 
    else:
        raise ValueError('Valid inputs to argument "stick" include the strings "day", "week", "month", "year", or a positive integer')
 
 
    # Set plot parameters, including the axis object ax used for plotting
    fig, ax = plt.subplots()
    fig.subplots_adjust(bottom=0.2)
    if plotdat.index[-1] - plotdat.index[0] < pd.Timedelta('730 days'):
        weekFormatter = DateFormatter('%b %d')  # e.g., Jan 12
        ax.xaxis.set_major_locator(mondays)
        ax.xaxis.set_minor_locator(alldays)
    else:
        weekFormatter = DateFormatter('%b %d, %Y')
    ax.xaxis.set_major_formatter(weekFormatter)
 
    ax.grid(True)
 
    # Create the candelstick chart
    candlestick_ohlc(ax, list(zip(list(date2num(plotdat.index.tolist())), plotdat["Open"].tolist(), plotdat["High"].tolist(),
                      plotdat["Low"].tolist(), plotdat["Close"].tolist())),
                      colorup = "black", colordown = "red", width = stick * .4)
 
    # Plot other series (such as moving averages) as lines
    if otherseries != None:
        if type(otherseries) != list:
            otherseries = [otherseries]
        dat.loc[:,otherseries].plot(ax = ax, lw = 1.3, grid = True)
 
    ax.xaxis_date()
    ax.autoscale_view()
    plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')
 
    plt.show()
Пример #7
0
                value + 0.5 * rect.get_height(),
                "{} - {:.2%}".format(
                    int(width),
                    float(width) / float(session_with_command)),
                ha='center',
                va='bottom')


print("plotting")

fig, ax = plt.subplots()

ax.plot(dates_x, y, linestyle='None', marker='o')

# every monday
mondays = WeekdayLocator(MONDAY)
months = MonthLocator(range(1, 13), bymonthday=1)
days = DayLocator(interval=1)
monthsFmt = DateFormatter("%d %b '%y")
daysFmt = DateFormatter("%d/%m/%y")
ax.xaxis.set_major_locator(mondays)
ax.xaxis.set_major_formatter(monthsFmt)
ax.xaxis.set_minor_locator(days)
ax.autoscale_view()

fig.autofmt_xdate()

ax.set_title(
    "Repartition of the credentials used during a telnet sessions over time (filtered: <"
    + str(thres_om) + ")")
ax.yaxis.grid(True, which='both')
Пример #8
0
import datetime
from pylab import *
from matplotlib.dates import MONDAY, SATURDAY
from matplotlib.finance import quotes_historical_yahoo
from matplotlib.dates import MonthLocator, WeekdayLocator, DateFormatter
from matplotlib.ticker import FormatStrFormatter

# the start and end date range for the financial plots
date1 = datetime.date(2003, 1, 1)
date2 = datetime.date(2004, 4, 12)

# the tick locators and formatters
mondays = WeekdayLocator(MONDAY)  # every monday
months = MonthLocator()  # every month
monthsFmt = DateFormatter('%b %d')  # looks like May 01
dollarFmt = FormatStrFormatter('$%0.2f')  # dollars!

# get some financial data from the finance module
quotes = quotes_historical_yahoo('INTC', date1, date2)
if not quotes: raise SystemExit  # failsafe

# extract the date and opening prices from the quote tuples
dates = [q[0] for q in quotes]
opens = [q[1] for q in quotes]

# plot_date will choose a default date ticker and formatter
ax = subplot(111)
plot_date(dates, opens, markeredgecolor='k')

# but we'll override the default with our custom locators and
# formatters
Пример #9
0
def drawPic(df, code, name):
    mondays = WeekdayLocator(MONDAY)  # 主要刻度
    alldays = DayLocator()  # 次要刻度
    # weekFormatter = DateFormatter('%b %d')     # 如:Jan 12
    mondayFormatter = DateFormatter('%m-%d-%Y')  # 如:2-29-2015
    dayFormatter = DateFormatter('%d')  # 如:12

    xx = []
    t = 0
    for DAT, DD in df.iterrows():
        t = t + 10
        xx.append(t)

    # --------------------------------------------------------------------
    plt.figure(4)  # 创建图表2
    ax1 = plt.subplot(411)  # 在图表2中创建子图1
    ax2 = plt.subplot(412)  # 在图表2中创建子图2
    ax3 = plt.subplot(413)  # 在图表2中创建子图2
    ax4 = plt.subplot(414)  # 在图表2中创建子图2

    # --------------------------------------------(子图表1)
    plt.sca(ax1)
    ax1.xaxis.set_major_locator(mondays)
    ax1.xaxis.set_minor_locator(alldays)
    ax1.xaxis.set_major_formatter(mondayFormatter)
    _candlestick(ax1, df, width=0.6, colorup='r', colordown='g')
    ax1.xaxis_date()
    plt.setp(plt.gca().get_xticklabels(),
             rotation=45,
             horizontalalignment='right')
    """
    plt.plot( xx, df['ma5'], linewidth = 0.5 )
    plt.plot( xx, df['ma10'], linewidth = 0.5 )
    plt.plot( xx, df['ma20'], linewidth = 0.5 )
    plt.plot( xx, df['ma30'], linewidth = 0.5 )
    plt.plot( xx, df['ma40'], linewidth = 0.5 )
    plt.plot( xx, df['ma60'], linewidth = 0.5 )
    plt.plot( xx, df['ma89'], linewidth = 0.5 )
    plt.plot( xx, df['ma144'], linewidth = 0.5 )
    plt.plot( xx, df['ma233'], linewidth = 0.5 )
    plt.plot( xx, df['ma377'], linewidth = 0.5 )
    plt.plot( xx, df['ma610'], linewidth = 0.5 )
    """
    # ax.grid(True)
    # --------------------------------------------(子图表2)
    plt.sca(ax2)
    # plt.plot( xx[len(xx)-500:len(xx)], df['j1'].tail(500), linewidth = 0.5 )
    plt.plot(xx, df['j1'], linewidth=0.5)
    plt.plot(xx, df['e1'], linewidth=0.5)

    plt.plot(xx, df['j2'], linewidth=0.5)
    plt.plot(xx, df['e2'], linewidth=0.5)

    plt.plot(xx, df['j3'], linewidth=0.5)
    plt.plot(xx, df['e3'], linewidth=0.5)

    plt.plot(xx, df['j4'], linewidth=0.5)
    plt.plot(xx, df['e4'], linewidth=0.5)

    plt.sca(ax3)
    plt.plot(xx, df['x1'], linewidth=0.5)
    plt.plot(xx, df['x2'] * 7, linewidth=0.5)
    plt.plot(xx, df['x3'] * 30, linewidth=0.5)
    plt.plot(xx, df['x4'] * 80, linewidth=0.5)

    plt.sca(ax4)
    plt.plot(xx, df['gain'], linewidth=0.5)

    plt.show()
Пример #10
0
def drawgraph(shcode, startdate=0, period=0, discover=None, pearson=None):
    # 1st parameter, shcode is stock code.  # e.g., shcode = "000020"     #동화약품(000020)
    # 2nd parameter, startdate is an index of DB data.
    # 3rd parameter, period is a number of DB data from startdate. default 0 means all period.

    # Fetch
    rows = shquery.getstockprice(shcode)

    # exception of function
    if len(rows) - 1 < startdate + period:
        return -1

    # create List type array
    marketdate, openprice, closeprice, highprice, lowprice = [], [], [], [], []
    for row in rows:
        marketdate.append(dates.date2num(row['marketdate']))
        openprice.append(int(row['openprice']))
        closeprice.append(int(row['closeprice']))
        highprice.append(int(row['highprice']))
        lowprice.append(int(row['lowprice']))
    j = period if period != 0 else len(rows) - 1 - startdate  # set period

    # create DataFrame
    k = startdate
    graph = {
        'marketdate': marketdate[k:k + j],
        'openprice': openprice[k:k + j],
        'closeprice': closeprice[k:k + j],
        'highprice': highprice[k:k + j],
        'lowprice': lowprice[k:k + j]
    }
    graph = DataFrame(graph)
    quotes = zip(graph['marketdate'], graph['openprice'], graph['highprice'],
                 graph['lowprice'], graph['closeprice'])
    # print(graph)

    # Graph Drawing
    mondays = WeekdayLocator(MONDAY)  # major ticks on the mondays
    alldays = DayLocator()  # minor ticks on the days
    weekFormatter = DateFormatter('%b %d, %Y')  # e.g., Jan 12, 2014

    fig, ax = plt.subplots()
    fig.subplots_adjust(bottom=0.2)
    # ax.xaxis.set_major_locator(mondays)
    # ax.xaxis.set_minor_locator(alldays)
    # ax.xaxis.set_major_formatter(weekFormatter)
    ax.xaxis_date()
    ax.autoscale_view()
    ax.grid(True)

    # print(graph['marketdate'][396])
    if discover is not None:
        if len(discover) != len(pearson):
            return -1

        j = -1
        for i in discover:
            j += 1

            ymin, ymax = graph['highprice'][i], graph['lowprice'][
                i]  # initialize
            for n in range(i, i + 30):
                ymin = min(ymin, graph['lowprice'][n])  # min value
                ymax = max(ymax, graph['highprice'][n])  # max value

            ax.set_title("Stock Code: " + shcode)  # set graph title
            ax.text(
                graph['marketdate'][i],
                ymax,
                str(float("{0:.2f}".format(pearson[j] * 100))) + "%",
                fontsize=8
            )  # print similarity percent (limiting floats to four decimal points)
            if i + (30 * 2) < len(rows) - 1:
                earning = ((int(graph['closeprice'][i + 50]) -
                            int(graph['closeprice'][i + 30])) /
                           int(graph['closeprice'][i + 30])
                           ) * 100  # calculate earning ratio
                earning = round(earning, 2)
                ax.text(graph['marketdate'][i + 50],
                        graph['highprice'][i + 50] + 250,
                        str(earning) + "%",
                        color='green',
                        fontsize=8)  # print earning ratio

            # Draw Rectangle
            # ax.text(graph['marketdate'][i], ymax - ymin, str(pearson[j])+"%")  # print earning ratio
            ax.add_patch(
                patches.Rectangle(
                    (graph['marketdate'][i], ymin),  # (x,y)
                    graph['marketdate'][i + 30] -
                    graph['marketdate'][i],  # width
                    ymax - ymin,  # height
                    fill=False,  # remove background
                    linewidth=1))

    candlestick_ohlc(ax, quotes, colorup="red", colordown="blue", width=0.6)
    plt.setp(plt.gca().get_xticklabels(),
             rotation=45,
             horizontalalignment='right',
             size=10)

    # Save graph
    filename = datetime.today().strftime("%Y%m%d_") + str(shcode) + "_" + str(
        startdate) + "_" + str(
            period) + "_" + "temp.png"  # e.g., 19931004_000020_0_0_temp.png
    filepath = "temp/" + filename
    if not os.path.isfile(filepath):
        plt.savefig(filepath, format='png')
        print("검색결과를 다음의 경로로 저장합니다. ", filename)
    else:
        print("기존의 검색결과가 존재하므로, 저장하지 않습니다. ", filename)
    plt.show()

    # End of function
    return filename
Пример #11
0
    def visualize(self, elements="C,CL,LMK,PV,PVL,ODR", ylimits=None):
        """
        elements: elements that should be plotted, see below.
        ylimits: range of y axis. e.g. (0, 100)

        { # element and its dependent columns
          # Basic
          "C"       : ["Close",],   # Mark the tick['Close'] value with point.
          "CL"      : ["Close",],   # Mark the tick['Close'] value as a line.
          "HLC"     : ["High", "Low", "Close"], # Plot the HLC values in the tick.

          # Derived
          "ODR"     : ["Open", "High", "Low", "Close", "Volume"],   # One Day Reversal. Mark the ODR ticks.

          "PV"      : ["Close", "Top", "Btm"],  # Label the pivot point value.
          "PVL"     : ["Close", "Top", "Btm"],  # Plot a Line that connects the pivot points.

          "EE"      : ["Buy", "Sell"],  # Mark the idea Buy/Sell point.

          "BAND"    : ["Band", "WM"],   # Mark the point with its current LMK Band Level.
          "BANDL"   : ["Band", "Buy", "Sell"],  # Mark line segment according to its current band level.
          "WM"      : ["Trend", "WM"],  # Mark the current resistant or support line
        }
        """

        h = self.history

        # --------------------------------------------------------------
        # ---- Background and Limits ----

        ax0 = plt.subplot2grid((5, 1), (0, 0), rowspan=4)
        ax0.set_xmargin(0.02)
        #http://stackoverflow.com/questions/3305865/what-is-the-difference-between-log-and-symlog
        #ax0.set_yscale("symlog", linthreshy=30)
        ax1 = plt.subplot2grid((5, 1), (4, 0), rowspan=1, sharex=ax0)
        ax1.yaxis.set_visible(False)
        #ax1.set_yscale("symlog", linthreshy=1000)

        self.figure = plt.gcf()
        #self.figure.clear()
        self.figure.suptitle("%s%s" %
                             (self.symbol, "" if self.symbol == self.name else
                              ("(%s)" % self.name)))
        self.figure.subplots_adjust(hspace=0)

        if ylimits is not None:
            ax0.set_ylim(*ylimits)
        else:
            close_min = min(h["Close"])
            close_max = max(h["Close"])
            height = close_min * .5
            ymin = close_min * 0.98
            ymax = close_min + (height * 1.02)
            if ymax < close_max:
                height = close_max - close_min
                ymax = close_min + height * 1.02
            ax0.set_ylim(ymin, ymax)

        ax0.set_axis_bgcolor('white')
        ax1.set_axis_bgcolor('white')

        # --------------------------------------------------------------

        # http://stackoverflow.com/questions/1166118/how-to-strip-decorators-from-a-function-in-python
        def plot_elements(*names):
            def decorated(f):
                @functools.wraps(f)
                def wrapper(*argv, **kargs):
                    return f(*argv, **kargs)

                wrapper.elements = names
                return wrapper

            return decorated

        def columns(*names):
            def decorated(f):
                @functools.wraps(f)
                def wrapper(*argv, **kargs):
                    h = argv[1]
                    ensure_columns_exist(h, names)

                    return f(*argv, **kargs)

                return wrapper

            return decorated

        # -- Basic Volume/Price --
        @plot_elements("V")
        @columns("CC", "Volume")
        def plot_V(ax, h):
            up = h[h["CC"] >= 0]
            ax.bar(up.index,
                   up["Volume"],
                   width=1,
                   color="black",
                   edgecolor="black",
                   linewidth=1,
                   alpha=.3,
                   align="center")
            dn = h[h["CC"] < 0]
            ax.bar(dn.index,
                   dn["Volume"],
                   width=1,
                   color="red",
                   edgecolor="red",
                   linewidth=1,
                   alpha=.3,
                   align="center")

        @plot_elements("C")
        @columns("Close", "CC")
        def plot_C(ax, h):
            up = h[h["CC"] >= 0]
            ax.plot(up.index,
                    up["Close"],
                    "_",
                    color="black",
                    alpha=.5,
                    markeredgewidth=2)
            dn = h[h["CC"] < 0]
            ax0.plot(dn.index,
                     dn["Close"],
                     "_",
                     color="red",
                     alpha=.5,
                     markeredgewidth=2)

        @plot_elements("CL")
        @columns("Close")
        def plot_CL(ax, h):
            ax.plot(h.index, h["Close"], "-", color="black", alpha=0.5)

        @plot_elements("HLC")
        @columns("High", "Low", "Close", "CC")
        def plot_HLC(ax, h):
            up = h[h["CC"] >= 0]
            ax.plot(up.index,
                    up["Close"],
                    "_",
                    color="black",
                    alpha=1,
                    markeredgewidth=1)
            up = h[h["Close"] >= h["Open"]]
            ax.vlines(up.index,
                      up["Low"],
                      up["High"],
                      color="black",
                      edgecolor="black",
                      alpha=1,
                      linewidth=1)

            dn = h[h["CC"] < 0]
            ax.plot(dn.index,
                    dn["Close"],
                    "_",
                    color="red",
                    alpha=1,
                    markeredgewidth=1)
            dn = h[h["Close"] < h["Open"]]
            ax.vlines(dn.index,
                      dn["Low"],
                      dn["High"],
                      color="red",
                      edgecolor="red",
                      alpha=1,
                      linewidth=1)

        # -- ODR --
        @plot_elements("ODR")
        @columns("ODR", "Close")
        def plot_ODR(ax, h):
            r = h[h["ODR"]]
            ax.plot(r.index,
                    r["Close"],
                    "rx",
                    markersize=8,
                    markeredgewidth=3,
                    alpha=1)

        # -- Pivots --
        @plot_elements("PV")
        @columns("Top", "Btm", "Close", "Low", "High")
        def plot_PV(ax, h):
            pivots = h[h["Top"] | h["Btm"]]
            for x, tick in pivots.iterrows():
                label = "%.2f" % tick["Close"]
                if tick["Top"]:  # crest
                    y = tick["High"]
                    ax.text(x, y, label, color="g", alpha=.8)
                else:  # trough
                    y = tick["Low"]
                    ax.text(x, y, label, color="r", alpha=.8)

        @plot_elements("PVL")
        @columns("Top", "Btm", "Close")
        def plot_PVL(ax, h):
            pivots = h[h["Top"] | h["Btm"]]
            ax.plot(pivots.index, pivots["Close"], "-", color="blue", alpha=.3)
            r = h[h["Top"]]
            ax.plot(r.index, r["Close"], "g^", alpha=1.0)
            r = h[h["Btm"]]
            ax.plot(r.index, r["Close"], "rv", alpha=1.0)

        # -- LMK --
        BAND_STYLE_MAP = {
            BAND_DNWARD: "rv",
            BAND_NAT_REACT: "m<",
            BAND_SEC_REACT: "m*",
            BAND_SEC_RALLY: "c*",
            BAND_NAT_RALLY: "c>",
            BAND_UPWARD: "g^",
        }

        @plot_elements("BAND", "LMK")
        @columns("Close", "WM", "Band")
        def plot_BAND(ax, h):
            for band in range(BAND_DNWARD, BAND_UPWARD + 1):
                #if band in (BAND_SEC_REACT, BAND_SEC_RALLY): continue
                r = h[(h["WM"] == h["Close"]) & (h["Band"] == band)]
                ax0.plot(r.index, r["Close"], BAND_STYLE_MAP[band], alpha=1.0)

        @plot_elements("BANDL")
        @columns("Band", "Buy", "Sell", "Close")
        def plot_BANDL(ax, h):
            chosen = ma.masked_where(~(h["Band"] >= BAND_NAT_RALLY),
                                     h["Close"])
            if chosen.any():
                ax.plot(h.index, chosen, "g-", linewidth=1, alpha=1)

            chosen = ma.masked_where(~(h["Band"] <= BAND_NAT_REACT),
                                     h["Close"])
            if chosen.any():
                ax.plot(h.index, chosen, "r-", linewidth=1, alpha=1)

        @plot_elements("WM")
        @columns("Trend", "WM", "ATR")
        def plot_WM(ax, h):
            chosen = ma.masked_where(~(h['Trend'] == TREND_UP), h["WM"])
            ax.plot(h.index,
                    chosen,
                    drawstyle="steps-post",
                    color="g",
                    linewidth=1.5)
            chosen = ma.masked_where(~(h['Trend'] == TREND_UP),
                                     h["WM"] - h["ATR"] * 2.0)
            ax.plot(h.index,
                    chosen,
                    drawstyle="steps-post",
                    color="r",
                    alpha=.5)
            chosen = ma.masked_where(~(h['Trend'] == TREND_UP),
                                     h["WM"] - h["ATR"])
            ax.plot(h.index,
                    chosen,
                    drawstyle="steps-post",
                    color="b",
                    alpha=.2)

            chosen = ma.masked_where(~(h['Trend'] == TREND_DN), h["WM"])
            ax.plot(h.index,
                    chosen,
                    drawstyle="steps-post",
                    color="r",
                    linewidth=1.5)
            chosen = ma.masked_where(~(h['Trend'] == TREND_DN),
                                     h["WM"] + h["ATR"] * 2.0)
            ax.plot(h.index,
                    chosen,
                    drawstyle="steps-post",
                    color="g",
                    alpha=.5)
            chosen = ma.masked_where(~(h['Trend'] == TREND_DN),
                                     h["WM"] + h["ATR"])
            ax.plot(h.index,
                    chosen,
                    drawstyle="steps-post",
                    color="b",
                    alpha=.2)

        @plot_elements("EE", "BS")
        @columns("Buy", "Sell", "Close")
        def plot_EE(ax, h):
            r = h[h["Buy"]]
            ax0.plot(r.index,
                     r["Close"],
                     "g+",
                     markersize=8,
                     markeredgewidth=3,
                     alpha=1)
            r = h[h["Sell"]]
            ax0.plot(r.index,
                     r["Close"],
                     "r_",
                     markersize=8,
                     markeredgewidth=3,
                     alpha=1)

        # Build the plotting function map ...
        plot_functions = [
            f for f in locals().values()
            if callable(f) and hasattr(f, "elements")
        ]
        plot_dict = {}
        for f in plot_functions:
            for element in f.elements:
                plot_dict[element] = f

        # do the real plotting ...
        l = re.split("[-:,;.]", elements)
        for c in l:
            _plot = plot_dict[c]
            if c != "V":
                _plot(ax0, h)
            else:
                _plot(ax1, h)

        # --------------------------------------------------------------
        # ---- Axis and Grid ----

        days = WeekdayLocator(MONDAY)

        #days = WeekdayLocator(FRIDAY)

        #dayFmt = DateFormatter("%d")
        def _dayFmt(x, pos):
            dt = num2date(x)
            return dt.strftime("%d")[-1] if dt.day < 10 else dt.strftime("%d")

        dayFmt = FuncFormatter(_dayFmt)

        months = MonthLocator(range(1, 13), bymonthday=1, interval=1)

        # http://stackoverflow.com/questions/11623498/date-formatting-with-matplotlib
        def _monthFmt(x, pos):
            dt = num2date(x)
            return dt.strftime('\n%Y') if dt.month == 1 else dt.strftime(
                "\n%b")

        monthFmt = FuncFormatter(_monthFmt)

        for ax in (ax0, ax1):
            ax.xaxis.set_major_locator(months)
            ax.xaxis.set_major_formatter(monthFmt)
            plt.setp(ax.xaxis.get_majorticklabels(), rotation=45, color="blue")
            if len(ax.get_xticks()) <= 12:
                ax.xaxis.set_minor_locator(days)
                ax.xaxis.set_minor_formatter(dayFmt)

        ax0.xaxis.grid(True,
                       which='major',
                       color="blue",
                       linestyle="-",
                       alpha=1)
        ax0.xaxis.grid(True,
                       which='minor',
                       color="gray",
                       linestyle="-",
                       alpha=.5)
        ax0.tick_params(labelbottom="off", which="both")
        ax0.yaxis.grid(True)

        ax1.xaxis.grid(True,
                       which='major',
                       color="blue",
                       linestyle="-",
                       alpha=1)
        ax1.xaxis.grid(True,
                       which='minor',
                       color="gray",
                       linestyle="-",
                       alpha=.3)

        # http://stackoverflow.com/questions/12750355/python-matplotlib-figure-title-overlaps-axes-label-when-using-twiny
        #ax0.set_title("%s%s" % (self.symbol, "" if self.symbol == self.name else ("(%s)" % self.name)), y=0.9)

        plt.show()
Пример #12
0
t = []
for single_date in daterange(start_date, end_date):
    times.append(PT.getTimes(single_date.timetuple(), cnf_city_coord, cnf_tz))
    t.append(single_date.toordinal())


fajr = [time2minutes(x['fajr']) for x in times]
sunrise = [time2minutes(x['sunrise']) for x in times]
dhuhr = [time2minutes(x['dhuhr']) for x in times]
asr = [time2minutes(x['asr']) for x in times]
maghrib = [time2minutes(x['maghrib']) for x in times]
isha = [time2minutes(x['isha']) for x in times]

# Date Locators
everyday = DayLocator(interval=1)
fridays = WeekdayLocator(FRIDAY)
months = MonthLocator(range(1, 13), bymonthday=1, interval=1) # every month
monthsFmt = DateFormatter("%b '%y")
daysFmt = DateFormatter("%d %b")

fig, ax = plt.subplots()
plt.plot(t,fajr, 'k',t,sunrise, 'k',t,dhuhr, 'k',t,asr, 'k',t,maghrib, 'k',t,isha, 'k')
ax.xaxis.set_major_locator(fridays)
ax.xaxis.set_major_formatter(daysFmt)
ax.xaxis.set_minor_locator(everyday)
ax.xaxis_date()
ax.autoscale_view()
ax.xaxis.grid(True, 'major')
ax.xaxis.grid(False, 'minor')
ax.set_title('Annual Prayer Times for '+cnf_city_name+', '+str(cnf_year))
#fig.autofmt_xdate() #Autorotate labels
Пример #13
0
    def _xAxis(self, ax):
        # X-axis labels
        # Don't create ticks when the x-axis range is too big. Likely this is because of
        # a problem with the input data. Some versions of python crash when trying to
        # create too many ticks
        range = mpl.xlim()
        if (range[1] - range[0] < 100):
            if (self.shortRange):
                mpl.gca().xaxis.set_major_locator(DayLocator(interval=1))
                mpl.gca().xaxis.set_minor_locator(HourLocator(interval=6))
                mpl.gca().xaxis.set_major_formatter(
                    DateFormatter('\n  %a %d %b %Y'))
                mpl.gca().xaxis.set_minor_formatter(DateFormatter('%H'))
            else:
                mpl.gca().xaxis.set_major_locator(
                    WeekdayLocator(byweekday=(MO, TU, WE, TH, FR)))
                mpl.gca().xaxis.set_major_formatter(
                    DateFormatter('\n%Y-%m-%d'))
                mpl.gca().xaxis.set_minor_locator(
                    WeekdayLocator(byweekday=(SA, SU)))
                mpl.gca().xaxis.set_minor_formatter(
                    DateFormatter('\n%Y-%m-%d'))
                mpl.xticks(rotation=90)

        if (self.showX):
            mpl.xlabel('Date', fontsize=self.labelFs)

        majlabels = [tick.label1 for tick in mpl.gca().xaxis.get_major_ticks()]
        for i in majlabels:
            # Don't show the last label, since it will be outside the range
            if (i == majlabels[len(majlabels) - 1]):
                i.set_visible(0)
            if (not self.showX):
                i.set_visible(0)
            else:
                if (self.shortRange):
                    i.set_horizontalalignment('left')
                    i.set_position((0, -0.035))
                else:
                    i.set_horizontalalignment('right')
                    i.set_rotation(30)
                i.set_verticalalignment('top')
                i.set_fontsize(self.fs)
                i.set_position((0, -0.035))
        minlabels = [tick.label1 for tick in mpl.gca().xaxis.get_minor_ticks()]
        for i in minlabels:
            if (not self.showX):
                i.set_visible(0)
            else:
                if (self.shortRange):
                    i.set_horizontalalignment('center')
                    i.set_rotation(0)
                    i.set_color("k")
                else:
                    i.set_horizontalalignment('right')
                    i.set_rotation(30)
                    i.set_color((1, 0, 1))  # Weekend days are magenta
                i.set_verticalalignment('top')
                i.set_fontsize(self.fs)

        ylabels = [tick.label1 for tick in mpl.gca().yaxis.get_major_ticks()]
        for i in ylabels:
            i.set_fontsize(self.fs)

        # Gridlines
        mpl.gca().xaxis.grid(True,
                             which='major',
                             color='k',
                             zorder=-10,
                             linestyle='-')
        if (self.shortRange):
            mpl.gca().xaxis.grid(True,
                                 which='minor',
                                 color='k',
                                 zorder=0,
                                 linestyle=':')
        else:
            mpl.gca().xaxis.grid(True,
                                 which='minor',
                                 color=(1, 0, 1),
                                 zorder=0,
                                 linestyle='-')

        minOffset = min(self.file.getOffsets())

        maxOffset = max(self.file.getOffsets())
        if (not np.isnan(self.maxOffset)):
            maxOffset = minOffset + self.maxOffset / 24.0
        mpl.xlim(minOffset, maxOffset)
Пример #14
0
def plot_covid(
    loc,
    cat,
    cty_state,
    wknd="skip weekends",
    start="2020-03-02",
    end=str(dt.date.today()),
    in_fn=f"DL-us-mobility.ndjson",
    out_fn=f"DL_mobility-index_{str(dt.date.today())}",
):
    """ 
    Parameters
    ----------
    loc : list
        a list of strings with names of counties, states, or both. default is a
        list containing: California, Texas, New York, Illinois, Washington, Florida.
    cat : list
        categorizes loc as states, counties, both, or rank; "rank" specifies 
        to rank top ten counties within a state or states. default is state.
    cty_state : str or list
        a string or list of strings with the state that corresponds to
        counties if that is what is specified in loc
    wknd : bool
        if weekends, include weekend dates; if skip_weekends, only include
        weekdays. default is False.
    start : str
        starting date for plot. optional.
    end: str
        ending date for plot. optional.
    in_fn: str
        input filename for plotting. optional.
    out_fn: str
        output filename for figure. default is "DL_mobility-index_{today}.png. optional. 
        
    Returns
    -------
    plot of mobility indices for specified locations and dates
    """

    # organize data
    data = {}
    states = []

    if (cat == "county" or cat == "both") and cty_state == None:
        print(
            "Please specify states for your county or counties to ensure you're getting the expected data."
        )

    for line in open(in_fn):
        d = json.loads(line)

        for aoi in loc:

            aoi = aoi.title()

            # state or default for county / both for if county states aren't specified
            if (cat == "state" or (cat == "county" and cty_state == None)
                    or (cat == "both" and cty_state == None)):

                if (aoi in d["admin1"] and d["admin_level"] == 1) or (
                        aoi in d["admin2"] and d["admin_level"] == 2):
                    states.append(d["admin1"])
                    data[aoi] = {}
                    data[aoi]["dates"] = d["date"]
                    data[aoi]["m50"] = d["m50_index"]
                    data[aoi]["samples"] = d["samples"]

            # counties all from the same state
            if (cat == "county" or cat == "both") and len(cty_state) == 1:

                state = cty_state[0].title()

                if (aoi in d["admin2"]
                        or aoi in d["admin1"]) and state in d["admin1"]:
                    states.append(d["admin1"])
                    data[aoi] = {}
                    data[aoi]["dates"] = d["date"]
                    data[aoi]["m50"] = d["m50_index"]
                    data[aoi]["samples"] = d["samples"]

            # counties from different states
            if (cat == "county" or cat == "both") and len(cty_state) > 1:

                for cty_st in cty_state:

                    if loc.index(aoi.lower()) == cty_state.index(cty_st):
                        state = cty_st.title()

                        if aoi.title() in d["admin2"] and state in d["admin1"]:
                            states.append(d["admin1"])
                            data[aoi] = {}
                            data[aoi]["dates"] = d["date"]
                            data[aoi]["m50"] = d["m50_index"]
                            data[aoi]["samples"] = d["samples"]
                            data[aoi]["state"] = d["admin1"]

            # counties ranked for a specific state
            if cat == "rank":

                if aoi in d["admin1"] and d["admin_level"] == 2:
                    data[d["admin2"]] = {}
                    data[d["admin2"]]["dates"] = d["date"]
                    data[d["admin2"]]["m50"] = d["m50_index"]
                    data[d["admin2"]]["samples"] = d["samples"]

    # prepare for plotting
    orddata = OrderedDict(
        sorted(data.items(), key=lambda x: getitem(x[1], "samples")))

    if cat == "rank":
        items = list(orddata.items())[-10:]
    else:
        items = list(orddata.items())

    mindex = {"x": [], "y": [], "label": []}

    for item in items:

        aoi = {"x": [], "y": []}

        for n in range(len(item[1]["dates"])):
            date = item[1]["dates"][n]
            m50 = item[1]["m50"][n]

            day = dt.date(int(date[:4]), int(date[5:7]),
                          int(date[8:10])).weekday()

            if not wknd and (day == 5 or day == 6):
                continue

            if not wknd and (day != 5 or day != 6):
                aoi["x"].append([dt.datetime.strptime(date, "%Y-%m-%d")])
                aoi["y"].append(m50)

            if wknd:
                aoi["x"].append([dt.datetime.strptime(date, "%Y-%m-%d")])
                aoi["y"].append(m50)

        mindex["x"].append(aoi["x"])
        mindex["y"].append(aoi["y"])
        mindex["label"].append(item[0])

    # plot data
    plt.rcParams["font.family"] = "sans-serif"
    plt.rcParams["font.sans-serif"] = ["Source Sans Pro"]

    fig, ax = plt.subplots(figsize=(8, 6))

    filled_markers = ["v", "^", "<", ">", "8", "s", "p"]

    for i in range(len(mindex["label"])):
        if i <= 8:
            plt.plot(mindex["x"][i],
                     mindex["y"][i],
                     marker="o",
                     label=mindex["label"][i])
        if i > 8:
            plt.plot(
                mindex["x"][i],
                mindex["y"][i],
                marker=filled_markers[i % 7],
                label=mindex["label"][i],
            )

    ax.set_ylabel("Mobility Index", fontsize=12)
    ax.set_ylim(0, 200)

    ax.set_xlim(dt.datetime.strptime(start, "%Y-%m-%d"),
                dt.datetime.strptime(end, "%Y-%m-%d"))
    plt.setp(ax.get_xticklabels(), rotation=50)

    plt.grid(axis="y")

    ax.xaxis.set_major_locator(WeekdayLocator(byweekday=MO))
    ax.xaxis.set_major_formatter(DateFormatter("%b %d"))

    logo = plt.imread(dl_logo64)

    if len(loc) <= 5 and cat != "rank":
        ax.legend(
            loc="upper center",
            fontsize=11,
            bbox_to_anchor=(0.75, -0.16),
            ncol=2,
            frameon=False,
        )
        ax.figure.figimage(logo, 200, 100, alpha=1.0, zorder=1)
        plt.figtext(
            0.08,
            -0.15,
            "CC BY 4.0  descarteslabs.com/mobility",
            ha="left",
            va="bottom",
            alpha=0.5,
            fontsize=8,
        )

    if len(loc) > 5 and len(loc) <= 12 or cat == "rank":
        ax.legend(
            loc="upper center",
            fontsize=11,
            bbox_to_anchor=(0.75, -0.16),
            ncol=2,
            frameon=False,
        )
        ax.figure.figimage(logo, 200, 100, alpha=1.0, zorder=1)
        plt.figtext(
            0.08,
            -0.05,
            "CC BY 4.0  descarteslabs.com/mobility",
            ha="left",
            va="bottom",
            alpha=0.5,
            fontsize=8,
        )

    if len(loc) > 12:
        ax.legend(
            loc="upper center",
            fontsize=11,
            bbox_to_anchor=(0.75, -0.16),
            ncol=3,
            frameon=False,
        )
        ax.figure.figimage(logo, 130, 130, alpha=1.0, zorder=1)
        plt.figtext(
            0.08,
            -0.05,
            "CC BY 4.0  descarteslabs.com/mobility",
            ha="left",
            va="bottom",
            alpha=0.5,
            fontsize=8,
        )

    plt.subplots_adjust(bottom=0.7)
    fig.tight_layout()

    # format titles based on user input
    if cat == "state":
        plt.title("United States")

    if cat == "county" or cat == "both":
        if len(set(states)) == 1:
            plt.title(states[0] + " Counties")

        if len(set(states)) != 1:
            plt.title("United States: Counties")

    if cat == "rank" and len(loc) == 1:
        plt.title(loc[0].title())

    if cat == "rank" and len(loc) > 1:
        plt.title("United States county comparisons")

    if cat == "both" and len(set(states)) != 1:
        plt.title("United States + Counties")

    # plot and save figure
    plt.draw()
    fig.savefig("{}.png".format(out_fn),
                bbox_inches="tight",
                pad_inches=0.1,
                dpi=200)
def candleLinePlots(candleData, candleTitle='a', **kwargs):
    Date = [date2num(date) for date in candleData.index]
    candleData.loc[:,'Date'] = Date
    listData = []
    
    for i in range(len(candleData)):
        a = [candleData.Date[i],\
            candleData.Open[i],candleData.High[i],\
            candleData.Low[i],candleData.Close[i]]
        listData.append(a)
    # 如 果 不 定 长 参 数 无 取 值 , 只 画 蜡 烛 图
    ax = plt.subplot()
    
    # 如 果 不 定 长 参 数 有 值 , 则 分 成 两 个 子 图
    flag=0
    if kwargs:
        if kwargs['splitFigures']:
            ax = plt.subplot(211)
            ax2= plt.subplot(212)
            flag=1;
        # 如 果 无 参 数 splitFigures , 则 只 画 一 个 图 形 框
        # 如 果 有 参 数 splitFigures , 则 画 出 两 个 图 形 框
        
        for key in kwargs:
            if key=='title':
                ax2.set_title(kwargs[key])
            if key=='ylabel':
                ax2.set_ylabel(kwargs[key])
            if key=='grid':
                ax2.grid(kwargs[key])
            if key=='Data':
                plt.sca(ax)
                if flag:
                    plt.sca(ax2)
                    
                #一维数据
                if kwargs[key].ndim==1:
                    plt.plot(kwargs[key],\
                             color='k',\
                             label=kwargs[key].name)
                    plt.legend(loc='best')
                #二维数据有两个columns
                elif all([kwargs[key].ndim==2,\
                          len(kwargs[key].columns)==2]):
                    plt.plot(kwargs[key].iloc[:,0], color='k', 
                             label=kwargs[key].iloc[:,0].name)
                    plt.plot(kwargs[key].iloc[:,1],\
                             linestyle='dashed',\
                             label=kwargs[key].iloc[:,1].name)
                    plt.legend(loc='best')
    
    mondays = WeekdayLocator(MONDAY)
    weekFormatter = DateFormatter('%y %b %d')
    ax.xaxis.set_major_locator(mondays)
    ax.xaxis.set_minor_locator(DayLocator())
    ax.xaxis.set_major_formatter(weekFormatter)
    plt.sca(ax)
    
    candlestick_ohlc(ax,listData, width=0.7,\
                     colorup='r',colordown='g')
    ax.set_title(candleTitle)
    plt.setp(ax.get_xticklabels(),\
             rotation=20,\
             horizontalalignment='center')
    ax.autoscale_view()
    
    return(plt.show())