def OnWhiz(self, evt): self.x += numerix.pi / 15 self.y += numerix.pi / 20 z = numerix.sin(self.x) + numerix.cos(self.y) self.im.set_array(z) zmax = numerix.max(numerix.max(z)) - ERR_TOL ymax_i, xmax_i = numerix.nonzero(numerix.greater_equal(z, zmax)) if self.im.origin == 'upper': ymax_i = z.shape[0] - ymax_i self.lines[0].set_data(xmax_i, ymax_i) self.canvas.draw()
def OnWhiz(self,evt): self.x += numerix.pi/15 self.y += numerix.pi/20 z = numerix.sin(self.x) + numerix.cos(self.y) self.im.set_array(z) zmax = mlab.max(mlab.max(z))-ERR_TOL ymax_i, xmax_i = numerix.nonzero( numerix.greater_equal(z, zmax)) if self.im.origin == 'upper': ymax_i = z.shape[0]-ymax_i self.lines[0].set_data(xmax_i,ymax_i) self.canvas.draw()
def init_plot_data(self): a = self.fig.add_subplot(111) x = numerix.arange(120.0)*2*numerix.pi/60.0 y = numerix.arange(100.0)*2*numerix.pi/50.0 self.x, self.y = meshgrid(x, y) z = numerix.sin(self.x) + numerix.cos(self.y) self.im = a.imshow( z, cmap=cm.jet)#, interpolation='nearest') zmax = numerix.max(numerix.max(z))-ERR_TOL ymax_i, xmax_i = numerix.nonzero( numerix.greater_equal(z, zmax)) if self.im.origin == 'upper': ymax_i = z.shape[0]-ymax_i self.lines = a.plot(xmax_i,ymax_i,'ko') self.toolbar.update() # Not sure why this is needed - ADS
raise ImportError('this example requires numpy') import matplotlib.numerix.ma as MA import matplotlib.numerix as N from matplotlib.toolkits.basemap import Basemap # read in data from netCDF file. infile = 'ccsm_popgrid.nc' fpin = NetCDFFile(infile) tlat = fpin.variables['TLAT'][:] tlon = fpin.variables['TLONG'][:] temp = fpin.variables['TEMP'][:] fillvalue = fpin.variables['TEMP'].attributes['_FillValue'] fpin.close() # make longitudes monotonically increasing. tlon = N.where(N.greater_equal(tlon,min(tlon[:,0])),tlon-360,tlon) # create a masked array with temperature data (continents masked). temp = MA.masked_values(temp,fillvalue) # stack grids side-by-side (in longitiudinal direction), so # any range of longitudes may be plotted on a world map. tlon = N.concatenate((tlon,tlon+360),1) tlat = N.concatenate((tlat,tlat),1) temp = MA.concatenate((temp,temp),1) tlon = tlon-360. pl.figure(figsize=(8.5,11)) pl.subplot(2,1,1) # subplot 1 just shows POP grid cells. map = Basemap(projection='merc', lat_ts=20, llcrnrlon=-180, \
raise ImportError('this example requires numpy') import matplotlib.numerix.ma as MA import matplotlib.numerix as N from matplotlib.toolkits.basemap import Basemap # read in data from netCDF file. infile = 'ccsm_popgrid.nc' fpin = NetCDFFile(infile) tlat = fpin.variables['TLAT'][:] tlon = fpin.variables['TLONG'][:] temp = fpin.variables['TEMP'][:] fillvalue = fpin.variables['TEMP'].attributes['_FillValue'] fpin.close() # make longitudes monotonically increasing. tlon = N.where(N.greater_equal(tlon, min(tlon[:, 0])), tlon - 360, tlon) # create a masked array with temperature data (continents masked). temp = MA.masked_values(temp, fillvalue) # stack grids side-by-side (in longitiudinal direction), so # any range of longitudes may be plotted on a world map. tlon = N.concatenate((tlon, tlon + 360), 1) tlat = N.concatenate((tlat, tlat), 1) temp = MA.concatenate((temp, temp), 1) tlon = tlon - 360. pl.figure(figsize=(8.5, 11)) pl.subplot(2, 1, 1) # subplot 1 just shows POP grid cells. map = Basemap(projection='merc', lat_ts=20, llcrnrlon=-180, \