Пример #1
0
def create_scurve(scurves, scurveFile):
	parse_functions.removing_existing_file(scurveFile)
	print("Creating scurve file: " + scurveFile)
	
	import matplotlib.pylab as plt

	fig = plt.figure()
	ax = fig.add_subplot(1, 1, 1)
	ax.set_ylim([0, 9])

	for i in range(1,10,1):
		plt.axhline(y = i, color ="black", linestyle ="--", linewidth=0.1, dashes=(5, 10)) 

	for strategy in scurves:
		length = len(scurves[strategy])
		middle = int(length/2-1)
		markers_on = [0, middle, length-1]
		#plt.plot(scurves[strategy], config_generator.symbols[strategy], color=config_generator.colors[strategy], markevery=marks, label=config_generator.abbreviations[strategy])
		plt.plot(scurves[strategy], config_generator.symbols[strategy], color=config_generator.colors[strategy], markevery=markers_on, label=config_generator.abbreviations[strategy], dashes=(5, 5))

	plt.ylabel('Normalized Times')
	plt.locator_params(nbins=3)
	plt.xticks([]) # hide axis x
	plt.legend() # show line names
	
	plt.savefig(scurveFile, format='eps')
 def set_axes_and_legend(ax):
     ax.spines['left'].set_position('zero')
     plt.locator_params(axis='x', nbins=4)
     ax.axes.yaxis.set_ticks([])
     if has_seaborn:
         sns.despine(ax=ax)
     plt.legend(loc='upper right', fontsize='x-small')
Пример #3
0
def multiPlot(myData):    
    ax=plt.subplot2grid((ncol,nrow),(yPanel,xPanel))
    ax.hist(df[quantVar[myData]],alpha=0.5)#alpha??
    ax.set_xlabel(quantVar[myData],fontsize=14,fontweight='bold')
    #ax.set_ylabel('Y',fontsize=14,fontweight='bold',rotation='Vertical')
    plt.locator_params(axis = 'x', nbins = 2)
    ax.tick_params(labelsize=14)
Пример #4
0
 def set_axes_and_legend(ax):
     ax.spines["left"].set_position("zero")
     plt.locator_params(axis="x", nbins=4)
     ax.axes.yaxis.set_ticks([])
     if has_seaborn:
         sns.despine(ax=ax)
     plt.legend(loc="upper right", fontsize="x-small")
def plot_pr_curve(precision, recall, title):
    plt.figure()
    plt.rcParams['figure.figsize'] = 7, 5
    plt.locator_params(axis = 'x', nbins = 5)
    plt.plot(precision, recall, 'b-', linewidth=4.0, color = '#B0017F')
    plt.title(title)
    plt.xlabel('Precision')
    plt.ylabel('Recall')
    plt.rcParams.update({'font.size': 16})
def plot_convolved_rates_in_time(spike_data, prm):
    print('plotting spike rastas...')
    save_path = prm.get_output_path() + '/Figures/ConvolvedRates_InTime'
    if os.path.exists(save_path) is False:
        os.makedirs(save_path)

    for cluster_index in range(len(spike_data)):
        cluster_index = spike_data.cluster_id.values[cluster_index] - 1
        spikes_on_track = plt.figure(figsize=(4, 5))
        ax = spikes_on_track.add_subplot(1, 1,
                                         1)  # specify (nrows, ncols, axnum)
        firing_rate = spike_data.loc[cluster_index].spike_rate_in_time
        speed = spike_data.loc[cluster_index].speed_rate_in_time
        x_max = np.max(firing_rate)
        ax.plot(firing_rate, speed, '|', color='Black', markersize=4)
        plt.ylabel('Firing rate (Hz)', fontsize=12, labelpad=10)
        plt.xlabel('Speed (cm/sec)', fontsize=12, labelpad=10)
        plt.xlim(0, 200)
        ax.yaxis.set_ticks_position('left')
        ax.xaxis.set_ticks_position('bottom')
        plot_utility.style_track_plot(ax, 200)
        plot_utility.style_vr_plot(ax, x_max)
        plt.locator_params(axis='y', nbins=4)
        try:
            plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
        except ValueError:
            continue
        plt.savefig(save_path + '/' + spike_data.session_id[cluster_index] +
                    '_rate_versus_SPEED_' + str(cluster_index + 1) + '.png',
                    dpi=200)
        plt.close()

        spikes_on_track = plt.figure(figsize=(4, 5))
        ax = spikes_on_track.add_subplot(1, 1,
                                         1)  # specify (nrows, ncols, axnum)
        position = spike_data.loc[cluster_index].location_rate_in_time
        ax.plot(firing_rate, position, '|', color='Black', markersize=4)
        plt.ylabel('Firing rate (Hz)', fontsize=12, labelpad=10)
        plt.xlabel('Location (cm)', fontsize=12, labelpad=10)
        plt.xlim(0, 200)
        ax.yaxis.set_ticks_position('left')
        ax.xaxis.set_ticks_position('bottom')
        plot_utility.style_track_plot(ax, 200)
        plot_utility.style_vr_plot(ax, x_max)
        plt.locator_params(axis='y', nbins=4)
        try:
            plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
        except ValueError:
            continue
        plt.savefig(save_path + '/' + spike_data.session_id[cluster_index] +
                    '_rate_versus_POSITION_' + str(cluster_index + 1) + '.png',
                    dpi=200)
        plt.close()
Пример #7
0
def wordshift_plot(topvals, xpadding=0.0, textopts={}):
    c1 = plt.rcParams['axes.color_cycle'][0]
    c2 = plt.rcParams['axes.color_cycle'][1]

    all_ixs = np.arange(len(topvals))

    scolor = 0

    is_pos = np.array((topvals.ws >= 0).tolist())

    kw = {
        'color': topvals.cols.values.tolist()
    } if 'cols' in topvals.columns else {}
    plt.barh(range(len(topvals)),
             topvals.ws.values,
             edgecolor='None',
             height=.4,
             **kw)

    plt.vlines(0, -20, 20, color='k', lw=LINEWIDTH)
    xmin, xmax = None, None
    invTrans = plt.gca().transData.inverted()
    for y, x in enumerate(topvals.ws):
        cword = topvals.index.values[y]
        ckw = textopts.copy()
        if 'cols' in topvals.columns:
            ckw['color'] = topvals.iloc[y].cols

        textobj = plt.text(x,
                           y - 0.1,
                           ' ' + cword + ' ',
                           ha='left' if x > 0 else 'right',
                           va='center',
                           **ckw)
        plt.draw()
        we = textobj.get_window_extent()
        cxmax, _ = invTrans.transform((we.xmax, we.ymax))
        if xmax is None or xmax < cxmax:
            xmax = cxmax
        cxmin, _ = invTrans.transform((we.xmin, we.ymin))
        if xmin is None or xmin > cxmin:
            xmin = cxmin
    plt.xlim([xmin - xpadding, xmax + xpadding])
    #plt.xlim([xmin*1.1-xpadding, xmax*1.1+xpadding])
    plt.ylim([-0.5, len(topvals)])
    plt.yticks([])
    #plt.gca().spines['top'].setp('color', 'k')
    plt.gca().spines['left'].set_visible(False)
    plt.gca().spines['right'].set_visible(False)
    plt.locator_params(axis='x', nbins=5)
Пример #8
0
def run():
    # Call the C NSAT
    print('Begin %s:run()' % (os.path.splitext(os.path.basename(__file__))[0]))
    cfg = nsat.ConfigurationNSAT.readfileb(nsat.fnames.pickled)
    nsat.run_c_nsat()

    # Load the results (read binary files)
    c_nsat_reader = nsat.C_NSATReader(cfg, nsat.fnames)
    states = c_nsat_reader.read_c_nsat_states()
    states_core0 = states[0][1]

    # wt = c_nsat_reader.read_c_nsat_weights_evo(0)[:, 1, 1]
    wt, pids = c_nsat_reader.read_synaptic_weights_history(post=[0])
    in_spikelist = SL
    out_spikelist = nsat.importAER(nsat.read_from_file(nsat.fnames.events+'_core_0.dat'),
                                   sim_ticks=sim_ticks,
                                   id_list=[0])

    # Plot the results
    fig = plt.figure(figsize=(10, 10))
    i = 1
    ax = fig.add_subplot(4, 1, i)
    ax.plot(states_core0[:-1, 0, i - 1], 'b', lw=3, label='$V_m$')
    ax.set_ylabel('$V_m$')
    ax.set_xticks([])
    plt.locator_params(axis='y', nbins=4)
    i = 2
    ax = fig.add_subplot(4, 1, i)
    ax.plot(states_core0[:-1, 0, i - 1], 'b', lw=3, label='$I_{syn}$')
    ax.set_ylabel('$I_{syn}$')
    ax.set_xticks([])
    plt.locator_params(axis='y', nbins=4)
    for t in SL[0].spike_times:
        plt.axvline(t, color='k')

    i = 4
    ax = fig.add_subplot(4, 1, i)
    for t in SL[0].spike_times:
        plt.axvline(t, color='k')
    ax.plot(states_core0[:-1, 0, 2], 'b', lw=3, label='$x_m$')
    ax.set_ylabel('$x_m$')
    plt.axhline(0, color='b', alpha=.5, linewidth=3)
    plt.locator_params(axis='y', nbins=4)
    i = 3

    ax = fig.add_subplot(4, 1, i)
    for t in SL[0].spike_times:
        plt.axvline(t, color='k')
    ax.plot(wt[0][:, 1, 1], 'r', lw=3)
    ax.set_ylabel('$w$')
    ax.set_xticks([])
    plt.locator_params(axis='y', nbins=4)

    plt.savefig('/tmp/%s.png' % (os.path.splitext(os.path.basename(__file__))[0]))
    plt.close()
    print('End %s:run()' % (os.path.splitext(os.path.basename(__file__))[0]))
Пример #9
0
    # wt = c_nsat_reader.read_c_nsat_weights_evo(0)[:, 1, 1]
    wt = c_nsat_reader.read_c_nsat_weights_evo(0)
    in_spikelist = SL
    out_spikelist = nsat.importAER(
        nsat.read_from_file(c_nsat_writer.fname.events + '_core_0.dat'),
        sim_ticks=sim_ticks,
        id_list=[0])

    # Plot the results
    fig = plt.figure(figsize=(10, 10))
    i = 1
    ax = fig.add_subplot(4, 1, i)
    ax.plot(states_core0[:-1, 0, i - 1], 'b', lw=3, label='$V_m$')
    ax.set_ylabel('$V_m$')
    ax.set_xticks([])
    plt.locator_params(axis='y', nbins=4)
    i = 2
    ax = fig.add_subplot(4, 1, i)
    ax.plot(states_core0[:-1, 0, i - 1], 'b', lw=3, label='$I_{syn}$')
    ax.set_ylabel('$I_{syn}$')
    ax.set_xticks([])
    plt.locator_params(axis='y', nbins=4)
    for t in SL[0].spike_times:
        plt.axvline(t, color='k')

    i = 4
    ax = fig.add_subplot(4, 1, i)
    for t in SL[0].spike_times:
        plt.axvline(t, color='k')
    ax.plot(states_core0[:-1, 0, 2], 'b', lw=3, label='$x_m$')
    ax.set_ylabel('$x_m$')
Пример #10
0
    return fig_dim


plt.figure(5, figsize=set_size(width / 2))
for i in range(filters.shape[1]):
    plt.plot(total_params,
             filters[:, i],
             label="Layer {}".format(i + 1),
             color=cmap(float(i) / filters.shape[1]))
    plt.plot(total_params,
             filt[i],
             label="Layer {} (fit)".format(i + 1),
             linestyle="dashed",
             color=cmap(float(i) / filters.shape[1]))

plt.locator_params(axis='x', nbins=5)
# plt.title("Layer's Filter vs Total Parameter")
plt.xlabel("Total Parameters")
plt.ylabel("Filters")
plt.legend()
plt.grid()
plt.tight_layout()
plt.savefig("savefigs/growth_{}_{}.pdf".format(args.model, args.dataset))

# ######
total_params = np.arange(1000, 100000000, 5000)

filt = np.array([total_params**b for b in beta])
filt = np.multiply(filt.transpose(), alpha).transpose()
print(filt[0])
for i in range(filters.shape[1]):
Пример #11
0
def run():
    # Call the C NSAT
    print('Begin %s:run()' % (os.path.splitext(os.path.basename(__file__))[0]))
    cfg = nsat.ConfigurationNSAT.readfileb(nsat.fnames.pickled)
    nsat.run_c_nsat()

    # Load the results (read binary files)
    c_nsat_reader = nsat.C_NSATReader(cfg, nsat.fnames)
    states = c_nsat_reader.read_c_nsat_states()
    time_core0, states_core0 = states[core][0], states[core][1]

    wt, pids = c_nsat_reader.read_synaptic_weights_history(
        post=[130, 150, 120])
    wt, pids = wt[0], pids[0]
    in_spikelist = SL
    out_spikelist = nsat.importAER(c_nsat_reader.read_events(0),
                                   sim_ticks=sim_ticks,
                                   id_list=[0])

    plt.matplotlib.rcParams['figure.subplot.bottom'] = .1
    plt.matplotlib.rcParams['figure.subplot.left'] = .2
    plt.matplotlib.rcParams['figure.subplot.right'] = .98
    plt.matplotlib.rcParams['figure.subplot.hspace'] = .1
    plt.matplotlib.rcParams['figure.subplot.top'] = 1.0
    # Plot the results
    fig = plt.figure(figsize=(14, 10))

    i = 4
    ax1 = fig.add_subplot(5, 1, i)
    for t in SL[100].spike_times:
        plt.axvline(t, color='g', alpha=.4)
    ax1.plot(states_core0[:-1, 0, 2], 'b', lw=3, label='$x_m$')
    ax1.set_ylabel('$x_m$')
    ax1.get_yaxis().set_label_coords(-0.12, 0.5)
    plt.setp(ax1.get_xticklabels(), visible=False)
    plt.axhline(0, color='b', alpha=.5, linewidth=3)
    plt.locator_params(axis='y', nbins=4)

    i = 5
    ax = fig.add_subplot(5, 1, i, sharex=ax1)
    for t in SL[0].spike_times:
        plt.axvline(t, color='k', alpha=.4)
    ax.plot(wt[:, 19, 1], 'r', lw=3)
    # ax.imshow(wt[:, :, 1], aspect='auto', interpolation='nearest')
    ax.set_ylabel('$w$')
    ax.set_xlabel('Time Step')
    ax.get_yaxis().set_label_coords(-0.12, 0.5)
    plt.locator_params(axis='y', nbins=4)

    i = 2
    ax = fig.add_subplot(5, 1, i, sharex=ax1)
    ax.plot(states_core0[:-1, 0, 0], 'b', lw=3, label='$V_m$')
    ax.set_ylabel('$V_m$')
    ax.get_yaxis().set_label_coords(-0.12, 0.5)
    plt.setp(ax.get_xticklabels(), visible=False)
    plt.locator_params(axis='y', nbins=4)

    i = 3
    ax = fig.add_subplot(5, 1, i, sharex=ax1)
    ax.plot(states_core0[:-1, 0, 1], 'b', lw=3, label='$I_{syn}$')
    ax.set_ylabel('$I_{syn}$')
    ax.get_yaxis().set_label_coords(-0.12, 0.5)
    plt.setp(ax.get_xticklabels(), visible=False)
    plt.locator_params(axis='y', nbins=4)
    for t in np.ceil(SL[0].spike_times):
        plt.axvline(t, color='k', alpha=.4)

    ax1 = fig.add_subplot(5, 1, 1, sharex=ax1)
    out_spikelist.id_slice([0]).raster_plot(display=ax1, kwargs={'color': 'b'})
    out_spikelist.id_slice(list(range(1,
                                      30))).raster_plot(display=ax1,
                                                        kwargs={'color': 'k'})
    ax1.set_xlabel('')
    plt.setp(ax1.get_xticklabels(), visible=False)
    ax1.get_yaxis().set_label_coords(-0.12, 0.5)
    plt.tight_layout()

    plt.savefig('/tmp/%s.png' %
                (os.path.splitext(os.path.basename(__file__))[0]))
    plt.close()
    print('End %s:run()' % (os.path.splitext(os.path.basename(__file__))[0]))
def plot_spikes_on_track(spike_data, raw_position_data,
                         processed_position_data, prm, prefix):
    print('plotting spike rastas...')
    save_path = prm.get_output_path() + '/Figures/spike_trajectories'
    if os.path.exists(save_path) is False:
        os.makedirs(save_path)

    rewarded_locations = np.array(
        processed_position_data['rewarded_stop_locations'].dropna(axis=0))  #
    rewarded_trials = np.array(
        processed_position_data['rewarded_trials'].dropna(axis=0))

    for cluster_index in range(len(spike_data)):
        cluster_index = spike_data.cluster_id.values[cluster_index] - 1
        x_max = max(
            np.array(spike_data.at[cluster_index,
                                   'beaconed_trial_number'])) + 1
        spikes_on_track = plt.figure(figsize=(4, (x_max / 32)))
        ax = spikes_on_track.add_subplot(1, 1,
                                         1)  # specify (nrows, ncols, axnum)

        #uncomment if you want to plot stops
        #ax.plot(beaconed[:,0], beaconed[:,1], 'o', color='LimeGreen', markersize=2, alpha=0.5)
        #ax.plot(nonbeaconed[:,0], nonbeaconed[:,1], 'o', color='LimeGreen', markersize=2, alpha=0.5)
        #ax.plot(probe[:,0], probe[:,1], 'o', color='LimeGreen', markersize=2, alpha=0.5)

        ax.plot(spike_data.loc[cluster_index].beaconed_position_cm,
                spike_data.loc[cluster_index].beaconed_trial_number,
                '|',
                color='Black',
                markersize=4)
        ax.plot(spike_data.loc[cluster_index].nonbeaconed_position_cm,
                spike_data.loc[cluster_index].nonbeaconed_trial_number,
                '|',
                color='Red',
                markersize=4)
        ax.plot(spike_data.loc[cluster_index].probe_position_cm,
                spike_data.loc[cluster_index].probe_trial_number,
                '|',
                color='Blue',
                markersize=4)
        ax.plot(rewarded_locations,
                rewarded_trials,
                '>',
                color='Red',
                markersize=3)

        plt.ylabel('Spikes on trials', fontsize=12, labelpad=10)
        plt.xlabel('Location (cm)', fontsize=12, labelpad=10)
        plt.xlim(0, 200)
        ax.yaxis.set_ticks_position('left')
        ax.xaxis.set_ticks_position('bottom')

        plot_utility.style_track_plot(ax, 200)
        plot_utility.style_vr_plot(ax, x_max)
        plt.locator_params(axis='y', nbins=4)
        try:
            plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
        except ValueError:
            continue
        plt.savefig(save_path + '/' + spike_data.session_id[cluster_index] +
                    '_track_firing_Cluster_' + str(cluster_index + 1) + '.png',
                    dpi=200)
        plt.close()
Пример #13
0
def freq_stack():
    global nboot, RSqStore, stname, RFstack, RFstack_mean, RFstack_std
    from matplotlib import pylab as plt
    from stack_synthetics import generate_synthetics

    DeconMethod, highT, path2rf, outfile, baz1, baz2, SNR_min, \
    nboot, Taup_Misfit_Min, Taup_Misfit_Max, average_type, allSyntheticParams = parse_inline_input()

    tmp = path2rf[0].split('/')[-1]

    #Manually change if you want to calc. goodness of fit
    CalculateGoodnessOfFit=False
    RSqStore={}

    #Dump information for the GRL publication
    if True:
        FileForPub = open('ForPub.txt', 'a')
        FileForPub.write('# \n')
        FileForPub.write('# %s \n' % tmp)
        FileForPub.write('# \n')

    #Prepare synthetics - set to true if a new database of synthetics needs to be generated (may take days!)
    if False:
        #for SyntheticParams in allSyntheticParams:
        #    for RayParam in [0.09, 0.092, 0.094, 0.096, 0.098, 0.1, 0.102, 0.104, 0.106, 0.108, 0.11, 0.112, 0.114, 0.116, 0.118]:
        #        generate_synthetics(SyntheticParams, RayParam)


    #Set up figture
    fig = plt.figure(1, figsize=(3.5, 1.75))
    params = {'legend.fontsize': 4,
              'figure.figsize': (3, 1.5),
              'axes.labelsize': 5,
              'axes.titlesize': 7,
              'figure.titlesize': 7,
              'figure.dpi': 500,
              'xtick.labelsize': 5,
              'ytick.labelsize': 5}
    plt.rcParams.update(params)

    #For the GRL paper, the goodness-of-fit calculation was carried out only at 16s
    #
    if CalculateGoodnessOfFit:
        ListOfPeriods = [16]
    else:
        ListOfPeriods = [20, 16, 12, 8, 4, 2]


    #Loop over periods and plot each RF
    #
    for isub, lowT in enumerate(ListOfPeriods):
        rect1 = [0.1, 0.15, 0.7, 0.8]
        rect2 = [0.82, 0.15, 0.1, 0.8]
        ax = fig.add_axes(rect1)
        ax4 = fig.add_axes(rect2)
        offset = isub

        if True:
            lenRFs, RPs, BAZIs, depths, NRFs = multi_station_stack(ax, ax4, path2rf, lowT, highT,
                                                     offset=offset,
                                                     label='%.0f-%.0f s' % (lowT, highT),
                                                     baz1=baz1,
                                                     baz2=baz2, SNR_min=SNR_min,
                                                     Taup_Misfit_Min=Taup_Misfit_Min,
                                                     Taup_Misfit_Max=Taup_Misfit_Max,
                                                     average_type=average_type,
                                                     DeconMethod=DeconMethod)
                                                     
            frp=open('RP_BAZI/file.txt','w')
            for itmp,tmp in enumerate(RPs):
                frp.write('%f  %f\n' % (RPs[itmp], BAZIs[itmp]))
                
            frp.close()    
            

        if True:
            from numpy import histogram, arange, sum
            bin_edges = arange(0.09, 0.122, 0.002)

            Weights, bin_edges = histogram(RPs,bins=bin_edges,density=True)
            Weights = Weights/sum(Weights)

            rps = bin_edges[:-1]

            lines = []
            labels = []
            syns = []

            for isyn in range(len(allSyntheticParams)):
                SyntheticParams = allSyntheticParams[isyn]
                SyntheticParams["DeconMethod"] = DeconMethod
                SyntheticParams["RayParams"] = rps
                SyntheticParams["Weights"] = Weights
                SyntheticParams["offset"] = offset
                SyntheticParams["nIter"] = 100 # for ITDD only
                SyntheticParams["lowT"] = lowT
                SyntheticParams["highT"] = highT
                #l0, RFsyn = add_synthetics(ax, SyntheticParams, Rescale=True)

                #lines.append(l0)
                #labels.append(SyntheticParams["label"])
                #syns.append(RFsyn)

        if CalculateGoodnessOfFit:
            if lowT == 16.:
                for ii in range(len(depths)):
                    from numpy import shape
                    #print shape(depths), shape(RFstack), shape(RFstack_std), shape(syns)
                    #FileForPub.write('%6.1f  %e  %e  %e  %e  %e  %e\n' %
                    # (depths[ii], RFstack_mean[ii], RFstack_std[ii], syns[0][ii], syns[1][ii], syns[2][ii], syns[3][ii]))

                    FileForPub.write('%6.1f  %e  %e  ' % (depths[ii], RFstack_mean[ii], RFstack_std[ii]))
                    for isyn in range(len(syns)):
                        FileForPub.write('%e  ' % (syns[isyn][ii]))
                    FileForPub.write('\n')

    if False:
        if len(allSyntheticParams)>0:
            ax.legend(lines,labels)

    ax4.fill_betweenx(depths, NRFs, x2=0.0, facecolor='lightblue')

    ylims=[0., 310.]
    ax.set_ylim(ylims)
    ax4.set_ylim(ylims)
    ax.set_xlim([-1, 8])
    ax.set_xticks([])

    ax.set_ylabel('Depth (km)')
    ax.invert_yaxis()
    ax4.invert_yaxis()
    ax4.set_yticklabels([])
    ax4.set_xlim(0, lenRFs*1.25)
    ax4.set_xticks([0, lenRFs])
    ax4.set_xlabel('RFs used\nin stack')

    if False:
        plt.suptitle('%s\n%d Receiver Functions -- SNR > %.1f -- nboot = %d -- Average: %s -- %s' % (
            path2rf, lenRFs, SNR_min, nboot, average_type, DeconMethod))

    if True:
        left, bottom, width, height = [0.62, 0.50, 0.15, 0.15]
        ax2 = fig.add_axes([left, bottom, width, height])
        (n, bins, patches) = ax2.hist(RPs)
        plt.annotate('Frequency', xy=(-0.25,0.5), xycoords='axes fraction', fontsize=3, rotation=90,va='center')
        plt.annotate('Ray Parameter (s/km)', xy=(0.5,-0.47), xycoords='axes fraction', fontsize=3,ha='center')
        plt.locator_params(axis='y', nbins=4)
        plt.locator_params(axis='x', nbins=5)
        plt.xlim([0.09, 0.120])

        left, bottom, width, height = [0.62, 0.25, 0.15, 0.15]
        ax3 = fig.add_axes([left, bottom, width, height])
        ax3.hist(BAZIs)
        plt.annotate('Frequency', xy=(-0.25,0.5), xycoords='axes fraction', fontsize=3, rotation=90, va='center')
        plt.annotate('Backazimuth (degrees)', xy=(0.5,-0.47), xycoords='axes fraction', fontsize=3, ha='center')
        plt.locator_params(axis='y', nbins=4)
        plt.locator_params(axis='x', nbins=5)
        plt.xlim([-180, 180])
        plt.xticks([-180,-60,60,180])

        for ax in [ax2, ax3]:
            for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
                             ax.get_xticklabels() + ax.get_yticklabels()):
                item.set_fontsize(3)

            plt.setp(ax.xaxis.get_majorticklabels(), rotation=0)
            plt.setp(ax.yaxis.get_majorticklabels(), rotation=0)

            for tick in ax.yaxis.get_majorticklabels():
                tick.set_x(+0.09)
            for tick in ax.xaxis.get_majorticklabels():
                tick.set_y(+0.18)
                tick.set_rotation(45)

    plt.savefig(outfile)


    #
    #
    #
    if CalculateGoodnessOfFit:
        nsyn=len(allSyntheticParams)
        #
        fout=open('RSq_%s.out' % stname,'w')
        #
        fout.write('%d  %d\n' % (nsyn,nboot))
        for iboot in range(nboot):
            tmpa=iboot
            fout.write('%5d   ' % tmpa)
            for isyn in range(1,nsyn+1):
                tmpb=RSqStore[(isyn, 16, iboot)]
                fout.write('%7e   ' % tmpb)
            fout.write('\n')

            #tmpstr = '%5d  %7e   %7e   %7e   %7e\n' % (tmpa, tmpb, tmpc, tmpd, tmpe)
            #fout.write(tmpstr)
        fout.close()

        fout=open('Model_List.out','w')
        for isyn in range(nsyn):
            tmp=allSyntheticParams[isyn]
            tmpa,tmpb,tmpc=tmp["LABDepth"], tmp["LABdlnv"], tmp["LABTransitionThickness"]
            fout.write('%f  %f  %f\n' % (tmpa,tmpb,tmpc) )
        fout.close()


    print 'Finished with %s ' % (outfile)
    return

def add_synthetics(ax, syntheticParams, Rescale=False):
    from matplotlib import pylab as plt

    global RFstack, RFstack_mean, nboot, RSqStore, RFstack_std
    from TOOLS import stack_synthetics
    from scipy.stats import linregress

    depths, RF = stack_synthetics(syntheticParams)

    scale = 6.5
    if syntheticParams["lowT"] > 10:
        scale = scale * 1.0

    if syntheticParams["DeconMethod"] == 'ITDD':
        scale = scale * 2.0

    refline = depths * 0. + syntheticParams["offset"]  # plot everything wrt this line

    # Enhance deep
    from numpy import array
    RF = RF*scale
    RFstack_meanScl = RFstack_mean * scale
    RFstack_stdScl = RFstack_std * scale
    RFstackScl = RFstack * scale

    if Rescale:
        phi, _, _, _, _ = linregress(RF, RFstack_meanScl)
        print 'rescaling by factor %f' % (phi)
        RF = RF * phi

    tmp = RF

    xs = tmp+refline

    l0 = ax.plot(xs, depths, ls=syntheticParams["LineStyle"], color=syntheticParams["Color"], linewidth=0.5)

    for iboot in range(nboot):
        mask = (depths > 150.0) * (depths < 250.0)
        RSq = sum((RF - RFstackScl[iboot,:])**2 / (RFstack_stdScl)**2 * mask)
        RSq = RSq / sum(mask)

        #plt.figure(13)
        #plt.plot(RFstackScl[iboot,:] - RFstack_stdScl)
        #plt.plot(RFstackScl[iboot,:] + RFstack_stdScl)
        #plt.plot(RF,'--')
        #plt.show()

        key=(syntheticParams["isyn"],syntheticParams["lowT"],iboot)
        RSqStore[key]=RSq
        #print key, RSq

    return l0, RF / scale

def multi_station_stack(ax, ax4, path2rf, lowT, highT,
                        offset=0.0, label='', scale_bar=False, baz1=-999.0, baz2=999.0,
                        SNR_min=0.0, Taup_Misfit_Min=-9999., Taup_Misfit_Max=9999.,
                        average_type='mean', DeconMethod='none'):
    """
    This code performs the single-station stacking by reading in individual RFs from the .mat files.
    The name of the subroutine is accurate because multiple stations and or channels can be stacked together
    by making the list path2rf longer than one element.
    """
    global RFstack_mean, RFstack, RFstack_std, nboot, stname
    from TOOLS import loadmat
    from numpy import zeros, isnan, std, mean, nanstd
    RFs_all = []
    RPs_all = []
    BAZIs_all = []
    SNRs_all = []

    for each_path2rf in path2rf:

        file_name = '%s/RF_Depth_%ds_%ds_%s_UsePostfilter_0.mat' % (each_path2rf, lowT, highT, DeconMethod)

        print '...loading %s' % (file_name)

        ###Open SNR file

        SNR = []
        Taup_Misfit = []

        snrfile = '%s/SNR_%ds_%ds.txt' % (each_path2rf, lowT, highT)
        file = open(snrfile)
        print "...%s snrfile loaded" % (snrfile)
        for line in file.readlines():
            nfo = line.strip('\n').split()
            SNR.append(float(nfo[1]))
            Taup_Misfit.append(float(nfo[2]))
        file.close()

        ###Get matfile
        matfile = loadmat(file_name)
        print "...%s matfile loaded" % (file_name)

        RFs = matfile["rfs"][:, :]

        stdRF0 = nanstd(RFs, axis=0)

        BAZIs = matfile["BAZIsave"][:]
        RPs = matfile["RPsave"][:]
        depths = matfile["RF_Depth"][:, 0]
        meanRF0 = matfile["RF_Depth"][:, 1]

        # check for bad snrfile
        if len(SNR) != len(RFs):
            print '***Warning: len(SNR) != len(RFs) , %d , %d ' % (len(SNR), len(RFs))
            dum = raw_input('Press enter to continue')

        stname = path2rf[0].split('/')[-1]

        #This is for printing data for bazi RFs
        if False:
            fout = open('%s_%02ds.txt' % (stname, lowT), 'w')

            for ii in range(len(RFs)):
                fout.write('%7f %7f \n' % (BAZIs[ii], SNR[ii]))
                tmp = RFs[ii]
                for jj in range(len(tmp)):
                    fout.write('   %10e\n' % (tmp[jj]))

            fout.close()


        # cull out undesirables
        for ii in range(len(RFs)):
            if BAZIs[ii] >= baz1 and BAZIs[ii] <= baz2 and \
                            SNR[ii] >= SNR_min and \
                            Taup_Misfit[ii] >= Taup_Misfit_Min and Taup_Misfit[ii] <= Taup_Misfit_Max:
                #
                # check if RF deviates far from mean RF - Emily's method

                ndev = 0
                for idep in range(len(depths)):
                    if RFs[ii, idep] > meanRF0[idep] + 1.0 * stdRF0[idep] or \
                                    RFs[ii, idep] < meanRF0[idep] - 1.0 * stdRF0[idep]:
                        ndev = ndev + 1

                determ = float(ndev) / float(len(depths))
                if determ < 0.75:
                    RFs_all.append(RFs[ii])
                    RPs_all.append(RPs[ii])
                    BAZIs_all.append(BAZIs[ii])
                    SNRs_all.append(SNR[ii])


    ### Estimate spatial coherence
    #from TOOLS import estimate_spatial_coherence
    #station=path2rf[0].split('/')[-1]
    #Dmin, Dmax = 150.0, 250.0
    #estimate_spatial_coherence(RFs_all, RPs_all, BAZIs_all, depths, Dmin, Dmax,
    #                           outfile='SPATCOH/spatcoh_%s_%ds_%dkm_%dkm.txt' % (station, lowT, Dmin, Dmax))

    #fdump=open('out.datadump','w')
    #
    #fdump.write('%d\n' % len(RFs_all))

    #for ii,tmp in enumerate(RFs_all):
    #    header = '%10f   %10f   %10f\n' % (RPs_all[ii], BAZIs_all[ii], SNRs_all[ii])
    #    fdump.write(header)
    #    for eachval in tmp:
    #        fdump.write('%-10.3e   ' % (eachval))
    #
    #    fdump.write('\n')
    #
    #fdump.close()

    #Dmin, Dmax = 80.0, 150.0
    #estimate_spatial_coherence(RFs_all, RPs_all, BAZIs_all, depths, Dmin, Dmax,
    #                           outfile='SPATCOH/spatcoh_%s_%ds_%dkm_%dkm.txt' % (station, lowT, Dmin, Dmax))

    #Dmin, Dmax = 150.0, 250.0
    #estimate_spatial_coherence(RFs_all, RPs_all, BAZIs_all, depths, Dmin, Dmax,
    #                           outfile='SPATCOH/spatcoh_%s_%ds_%dkm_%dkm.txt' % (station, lowT, Dmin, Dmax))

    ### Begin stacking and bootstrapping
    RFstack = zeros(nboot * len(RFs_all[0])).reshape(nboot, len(RFs_all[0]))

    NRFs = []

    ## New section
    from numpy import nanmedian, shape, nanmean
    NRF, NDEP = shape(RFs_all)

    tmp=zeros(NRF*NDEP).reshape(NRF,NDEP)

    for ii in range(NRF):
        for jj in range(NDEP):
            tmp[ii,jj] = RFs_all[ii][jj]

    from numpy.random import randint
    for iboot in range(nboot):
        resamp=zeros(NRF*NDEP).reshape(NRF,NDEP)
        for ii in range(NRF):
            index=randint(0, NRF-1)
            resamp[ii,:]=tmp[index,:]
        if average_type == 'median':
            RFstack[iboot, :] = nanmedian(resamp,axis=0)
        elif average_type == 'mean':
            RFstack[iboot, :] = nanmean(resamp, axis=0)
        else:
            from sys import exit
            exit('Error: bad average type')


    for idep, depth in enumerate(depths):
         amp_at_dep = []  # list containing RF amps at depth
         for iRF in range(len(RFs_all)):
             if not isnan(RFs_all[iRF][idep]):
                 amp_at_dep.append(RFs_all[iRF][idep])
    #
         NRF = len(amp_at_dep)
         NRFs.append(NRF)
    #
    #     for iboot in range(nboot):
    #         if average_type == 'mean':
    #             RFstack[iboot, idep] = mean(choice(amp_at_dep, NRF))
    #         elif average_type == 'median':
    #             RFstack[iboot, idep] = median(choice(amp_at_dep, NRF))
    #         elif average_type == 'tmean':
    #             tmp_m = mean(choice(amp_at_dep, NRF))
    #             tmp_std = std(choice(amp_at_dep, NRF))
    #             lwr = tmp_m - 2.0 * tmp_std
    #             upr = tmp_m + 2.0 * tmp_std
    #             tmp_tm = tmean(choice(amp_at_dep, NRF), limits=(lwr, upr))
    #             RFstack[iboot, idep] = tmp_tm

    RFstack_mean = mean(RFstack, axis=0)
    RFstack_std = std(RFstack, axis=0)

    refline = depths * 0. + offset  # plot everything wrt this line

    scale = 6.0
    if lowT > 10:
        scale = scale * 1.0

    if DeconMethod == 'ITDD':
        scale = scale * 2.0

    ax.plot(refline, depths, '--', color='black', linewidth=0.2)

    nsigma = 2.0
    fmin = (RFstack_mean - nsigma * RFstack_std) * scale + refline
    fmax = (RFstack_mean + nsigma * RFstack_std) * scale + refline
    ax.fill_betweenx(depths, fmin, fmax, facecolor='gray', edgecolor='None')
    fmin = RFstack_mean * 0.0 + refline
    fmax = (RFstack_mean - nsigma * RFstack_std) * scale + refline
    ax.fill_betweenx(depths, fmin, fmax, where=fmax > fmin, facecolor='red', edgecolor='None')
    fmax = RFstack_mean * 0.0 + refline
    fmin = (RFstack_mean + nsigma * RFstack_std) * scale + refline
    ax.fill_betweenx(depths, fmin, fmax, where=fmax > fmin, facecolor='blue', edgecolor='None')

    ax.text(refline[0], 330, label, fontsize=5,
            horizontalalignment='center',rotation=30.0)

    #Scale Bar
    if True:
        ls=6.7
        rs=ls+ scale * 0.1
        ys=45.
        ax.plot([ls, rs], [ys, ys],linewidth=1, color='black')
        ax.text((ls+rs)/2.,ys-5.,'10% parent\namplitude', ha='center', weight='light', style='italic', fontsize=3.5)

        ax.annotate(stname, xy=(0.01,0.05) ,xycoords='axes fraction', weight='bold',fontsize=5)

    return len(RFs_all), RPs_all, BAZIs_all, depths, NRFs

def parse_inline_input():

    # These are the stacking params
    DeconMethod = raw_input('Deconvolution Method (ETMTM): \n').split()[0]
    highT = float(raw_input('High T in seconds (100): \n').split()[0])
    numsta = int(raw_input('Number of channels (1): \n').split()[0])

    path2rf=[]
    tmp = raw_input('Path for channels (separated by spaces): \n').split()
    for ista in range(numsta):
        path2rf.append(tmp[ista])

    outfile = raw_input('Outfile: \n').split()[0]
    baz1, baz2 = raw_input('Baz1, Baz2: \n').split()[0:2]
    baz1,baz2 = float(baz1), float(baz2)
    SNR_min = float(raw_input('SNR Min: \n').split()[0])
    nboot = int(raw_input('Nboot: \n').split()[0])
    Taup_Misfit_Min, Taup_Misfit_Max = raw_input('Taup Misfit Min, Max: \n').split()[0:2]
    Taup_Misfit_Min, Taup_Misfit_Max = float(Taup_Misfit_Min), float(Taup_Misfit_Max)
    average_type = raw_input('Average Type (median): \n').split()[0]

    #Put synthetic params in a list of dictionary
    numsyn = int(raw_input('Number of synthetics (0): \n').split()[0])

    allSyntheticParams=[]

    for isyn in range(numsyn):
        tmp={}
        a,b = raw_input('Moho: Depth (km), Fractional Velocity Jump \n').split()[0:2]
        tmp["MohoDepth"], tmp["Mohodlnv"] = float(a), float(b)
        a,b   = raw_input('MLD: Depth (km), Fractional Velocity Jump \n').split()[0:2]
        tmp["MLDDepth"], tmp["MLDdlnv"] = float(a), float(b)
        a,b,c  = raw_input('LAB: Depth (km), Fractional Velocity Jump \n').split()[0:3]
        print a,b,c
        tmp["LABDepth"], tmp["LABdlnv"], tmp["LABTransitionThickness"] = float(a), float(b), float(c)
        tmp["PulseWidth"] = float(raw_input('Pulse Width (s) \n').split()[0])
        a,b = raw_input('Line Style and Color (- black): \n').split()[0:2]
        tmp['LineStyle']=a
        tmp['Color']=b
        tmp['label'] = raw_input('Line label: \n')
        tmp['propMat'] = True
        tmp['isyn'] = isyn + 1  #python counts from 0
        allSyntheticParams.append(tmp)

    return DeconMethod, highT, path2rf, outfile, baz1, baz2,\
           SNR_min, nboot, Taup_Misfit_Min, Taup_Misfit_Max, average_type, \
           allSyntheticParams

def write_depth_integrated_variance(RFstack_std, SNR_min):
    fout = open('depth_integrated_variance.txt', 'a')
    text = 'Depth-integrated variance, SNR_min = %f, %f\n' % (sum(RFstack_std), SNR_min)
    fout.write(text)
    fout.close()

    return

def parse_user_input_old():
    from sys import argv

    inputs = argv
    dummy = inputs.pop(0)
    DeconMethod = inputs.pop(0)
    # use popleft to take one arg at a time

    highT = float(inputs.pop(0))

    # print inputs
    numsta = int(inputs.pop(0))

    path2rf = []
    for ista in range(numsta):
        path2rf.append(inputs.pop(0))

    outfile = inputs.pop(0)

    baz1 = float(inputs.pop(0))
    baz2 = float(inputs.pop(0))
    SNR_min = float(inputs.pop(0))
    nboot = int(inputs.pop(0))
    Taup_Misfit_Min = float(inputs.pop(0))
    Taup_Misfit_Max = float(inputs.pop(0))
    average_type = inputs.pop(0)

    # print 'Saving to %s ' % (outfile)

    return DeconMethod, highT, path2rf, outfile, baz1, baz2, SNR_min, nboot, Taup_Misfit_Min, Taup_Misfit_Max, average_type
Пример #14
0
            def draw_barchart(Time):
                df_frame = (df[df["date"].eq(Time)].sort_values(
                    by="counts", ascending=True).tail(num_of_elements))
                ax.clear()

                normal_colors = dict(
                    zip(df["country"].unique(), rgb_colors_opacity))
                dark_colors = dict(zip(df["country"].unique(),
                                       rgb_colors_dark))

                ax.barh(
                    df_frame["country"],
                    df_frame["counts"],
                    color=[normal_colors[x] for x in df_frame["country"]],
                    height=0.8,
                    edgecolor=([dark_colors[x] for x in df_frame["country"]]),
                    linewidth="6",
                )

                dx = float(df_frame["counts"].max()) / 200

                for i, (value, name) in enumerate(
                        zip(df_frame["counts"], df_frame["country"])):
                    ax.text(
                        value + dx,
                        i + (num_of_elements / 50),
                        "    " + name,
                        size=14,
                        weight="bold",
                        ha="left",
                        va="center",
                        fontdict={"fontname": "Trebuchet MS"},
                    )
                    ax.text(
                        value + dx * 10,
                        i - (num_of_elements / 50),
                        f"    {value:,.0f}",
                        size=14,
                        ha="left",
                        va="center",
                    )

                time_unit_displayed = re.sub(r"\^(.*)", r"", str(Time))
                ax.text(
                    1.0,
                    1.14,
                    time_unit_displayed,
                    transform=ax.transAxes,
                    color="#666666",
                    size=14,
                    ha="right",
                    weight="bold",
                    fontdict={"fontname": "Trebuchet MS"},
                )
                # ax.text(-0.005, 1.06, 'Number of confirmed cases', transform=ax.transAxes, size=14, color='#666666')
                ax.text(
                    -0.005,
                    1.14,
                    "Number of {} cases ".format(field),
                    transform=ax.transAxes,
                    size=14,
                    weight="bold",
                    ha="left",
                    fontdict={"fontname": "Trebuchet MS"},
                )

                ax.xaxis.set_major_formatter(
                    ticker.StrMethodFormatter("{x:,.0f}"))
                ax.xaxis.set_ticks_position("top")
                ax.tick_params(axis="x", colors="#666666", labelsize=12)
                ax.set_yticks([])
                ax.set_axisbelow(True)
                ax.margins(0, 0.01)
                ax.grid(which="major", axis="x", linestyle="-")

                plt.locator_params(axis="x", nbins=4)
                plt.box(False)
                plt.subplots_adjust(
                    left=0.075,
                    right=0.75,
                    top=0.825,
                    bottom=0.05,
                    wspace=0.2,
                    hspace=0.2,
                )
    
    p = mets(met)
    p_met[nm] = p
    nm += 1

###########################################################################
tag = sys.argv[1].split('/')[-1].split('.')[0]

print "Making the plots....."
# Histograms of momentum
plt.figure()

plt.subplot(321)
lch.hist_err(p_jets[p_jets>-999],bins=50,range=(0,400),fmt='o',markersize=5,color='black',ecolor='black')
plt.title("%s: Jet momentum" % (tag))
plt.locator_params(nbins=6)
#plt.xlabel("Momentum")

plt.subplot(322)
lch.hist_err(p_muons[p_muons>-999],bins=50,range=(0,300),fmt='o',markersize=5,color='red',ecolor='red')
plt.title("%s: Muon momentum" % (tag))
#plt.xlabel("Momentum")

plt.subplot(323)
lch.hist_err(p_electrons[p_electrons>-999],bins=50,range=(0,200),fmt='o',markersize=5,color='green',ecolor='green')
plt.title("%s: Electron momentum" % (tag))
#plt.xlabel("Momentum")

plt.subplot(324)
lch.hist_err(p_photons[p_photons>-999],bins=50,range=(0,200),fmt='o',markersize=5,color='orange',ecolor='orange')
plt.title("%s: Photon momentum" % (tag))
Пример #16
0
         c=colors.red,
         ls='dotted')
plt.plot(xfit,
         pars[0][2] * polya(xfit, pars[0][0], pars[0][1], 1) / 10000.0,
         c=colors.red,
         ls='dashed')
plt.plot(xfit,
         pars[0][3] * polya(xfit, pars[0][0], pars[0][1], 2) / 10000.0,
         c=colors.red,
         ls='-.')
plt.ylabel(r'Counts$\times10^4$/ 2$\times10^{-4}$ a.u.', labelpad=15)
plt.xlim(0, xmax)
plt.ylim(0, 4)
plt.tick_params(axis='x', which='both', labelbottom='off')
plt.legend(loc='upper right', framealpha=0, fontsize=legendFS)
plt.locator_params(axis='y', nticks=3)
plt.yticks([0, 1, 2, 3, 4])

plt.sca(ax[1])
plt.errorbar(x[c], (n[c] / pFit3(x[c], pars[0])),
             yerr=(n[c] / pFit3(x[c], pars[0])) *
             np.sqrt((nerr[c] / n[c])**2 + (1.0 / pFit3(x[c], pars[0]))**2),
             marker='+',
             color=colors.red,
             linestyle='None')
plt.axhline(1, c=colors.black, linestyle='dashed')
plt.xlabel('Current [a.u.]')
plt.ylabel(r'Ratio')
plt.xlim(0, xmax)
plt.ylim(0.85, 1.15)
plt.yticks([0.9, 1, 1.1])