Пример #1
0
        def vis_square(data):
            """
            Code from: http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb, with small modifications
            Take an array of shape (n, height, width) or (n, height, width, 3)
            and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)
            """

            # normalize data for display
            data = (data - data.min()) / (data.max() - data.min())

            # force the number of filters to be square
            n = int(np.ceil(np.sqrt(data.shape[0])))
            padding = (((0, n**2 - data.shape[0]), (0, 1),
                        (0, 1)) + ((0, 0), ) * (data.ndim - 3)
                       )  # don't pad the last dimension (if there is one)
            data = np.pad(data, padding, mode='constant',
                          constant_values=1)  # pad with ones (white)

            # tile the filters into an image
            data = data.reshape((n, n) + data.shape[1:]).transpose(
                (0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
            data = data.reshape((n * data.shape[1], n * data.shape[3]) +
                                data.shape[4:])

            fig = plt.figure(figsize=(10, 10))
            ax = fig.add_subplot(111)
            with plt.rc_context({
                    'image.interpolation': 'nearest',
                    'image.cmap': 'gray'
            }):
                ax.imshow(data)
            ax.axis('off')
            return fig
Пример #2
0
def show_training_matrixes(estimates, title):
    length = len(estimates)
    axes = []
    fig = plt.figure(figsize=(100, 2 * length))
    fig.suptitle(title, fontsize=30, verticalalignment='top')
    for i in range(length):
        axes.append(fig.add_subplot(length, 1, i + 1))

    with plt.rc_context({'image.cmap': 'gray', 'image.interpolation': 'nearest'}):
        for i in range(length):
            axes[i].matshow(estimates[i])
            axes[i].axis('off')
    return fig
Пример #3
0
# %tensorflow_version 2.x
import tensorflow as tf
import tensorflow_hub as hub

from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Embedding, Flatten, GlobalAveragePooling1D

import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import os, re, json, functools

plt.rc_context({'xtick.color':'w', 'ytick.color':'w', 'text.color':'w', 'axes.labelcolor':'w'})

seed=2811
np.random.seed(seed)
tf.random.set_seed(seed)

pip install kaggle --upgrade

os.environ['KAGGLE_USERNAME'] = "******"
os.environ['KAGGLE_KEY'] = "5912caabf0d1fa350842f382da374953"

#https://www.kaggle.com/rounakbanik/the-movies-dataset
!kaggle datasets download rounakbanik/the-movies-dataset

!unzip -o 'the-movies-dataset.zip'
Пример #4
0
#code used to plot a graph
from matplotlib import pylab as plt
get_ipython().magic('matplotlib inline')
# tweak figure appearance 
rc = {'xtick.labelsize': 16,
      'ytick.labelsize': 16,
      'axes.labelsize': 18,
      'axes.labelweight': '900',
      'legend.fontsize': 20,
      'font.family': 'cursive',
      'font.monospace': 'Nimbus Mono L',
      'lines.linewidth': 2,
      'lines.markersize': 9,
      'xtick.major.pad': 20}
plt.rc_context(rc=rc)
plt.rcParams['font.family'] = 'serif'
plt.rcParams['axes.labelsize'] = 22
plt.rcParams['figure.figsize'] = 9, 6  # make figures larger in notebook

def plot_results(results, title, xlabels, ylabel="Success Rate"):
    '''Plot a bar graph of results'''
    ind = np.arange(len(results))
    width = 0.4
    plt.bar(ind, results, width, color="#1AADA4")
    plt.ylabel(ylabel)
    plt.ylim(ymax=100)
    plt.xticks(ind+width/2.0, xlabels)
    plt.title(title)