def histogram(arguments): data = list(map(float, sys.stdin.readlines())) data_min = min(data) data_avg = pylab.average(pylab.array(data)) data_max = max(data) data_std = pylab.std(pylab.array(data)) data = filter( lambda n: data_avg + arguments.n * data_std > (n**2)**0.5, data) pyplot.hist(list(data), bins=arguments.bins) pyplot.suptitle(arguments.suptitle) if arguments.title is None: pyplot.title('min|avg|max|std = {0:0.2f}|{1:0.2f}|{2:0.2f}|{3:0.2f}' .format(data_min, data_avg, data_max, data_std)) else: pyplot.title(arguments.title) pyplot.xlabel(arguments.xlabel) pyplot.ylabel(arguments.ylabel) pyplot.grid() pyplot.savefig(path(arguments))
def make_error(data_file, xin=None): databox = spinmob.data.load(data_file) errs = [] xs = databox.c('c8') xs -= xs[0] for i in range(6): vals = databox.c('c{:d}'.format(i)) if xin: vals = pylab.array([v for x, v in zip(xs, vals) if xin[0] <= x <= xin[1]]) std = pylab.std(vals) errs.append(std) err = pylab.mean(errs) return err, errs
def print_stats(list_1): print("\t N\t", len(list_1)) print("\t mean\t", pylab.mean(list_1)) print("\t error\t", pylab.std(list_1) / pylab.sqrt(len(list_1)))
receptive_field = K * (2**D * 2) - (K - 1) receptive_field_ms = receptive_field * 1000 / sr print("Receptive field: {0}".format(receptive_field)) print("Receptive field: {0:.4} ms".format(receptive_field_ms)) # x = P.hstack([x + P.randn(len(x))*.02*v, x + P.randn(len(x))*.01*v, x]) # y = P.hstack([y, y, y]) print("Calculating error stats...") ah = 8 a = y.reshape(-1)[:-ah] ax = x.reshape(-1) print("VARIANCE") print(P.var(a)) print("STD") print(P.std(a)) A = P.vstack([a[i:(i - ah)] for i in range(ah)]) AX = P.vstack([ax[i:(i - 2 * ah)] for i in range(2 * ah)]) A = P.vstack([A, AX, ax[2 * ah:]]) b = a[ah:] A = A - P.mean(A, 1).reshape(-1, 1) b = b - P.mean(b) print("LMMSE with {0} taps".format(ah)) LMMSE = P.mean((b - A.T.dot(P.inv(P.dot(A, A.T)).dot(A.dot(b))))**2) print(LMMSE) print("LMRMSE with {0} taps".format(ah)) print(P.sqrt(LMMSE)) def mu_law(a, mu=256, MAX=None): mu = mu - 1