Пример #1
0
def sol_tov(rho_center):
    rmin = dr
    rmax = 20000.0
    r = pylab.arange(rmin, rmax + dr, dr)
    m = pylab.zeros_like(r)
    P = pylab.zeros_like(r)
    m[0] = (4.0 / 3.0) * pi * rho_center * r[0]**3
    P[0] = eos(rho_center)
    y = pylab.array([P[0], m[0]])
    i = 0
    while P[i] > 0.0 and i < len(r) - 1:
        y = rk4(tov, y, r[i], dr)
        P[i + 1] = y[0]
        m[i + 1] = y[1]
        i = i + 1
    rho = pylab.array(list(map(lambda p: inv_eos(p), P)))

    m, r, rho, P = m[:i], r[:i], rho[:i], P[:i]  # Give restriction for region

    if isentropic:  # Consider the isentropic case
        # We use conventional finite differencing to handle this case
        drhodr = get_dfdr(rho, dr)
        rprime = (r[-1] - r)[::-1]  # Inward integration variable
        # Specific internal energy from thermo identities
        u_integrand = (-P * drhodr / (rho**2))[::-1]
        # Interpolation
        integrand_interpol = iterp1d(rprime, u_integrand, kind='cubic')
        urhs = lambda u, rprime: integrand_interpol(rprime)
        u = np.zeros_like(r)
        for i in range(0, len(rprime) - 1):
            u[i + 1] = rk4(urhs, u[i], rprime[i], dr)  # Using RK4 to integrate
            u = u[::-1]  # Reverse u
    else:
        u = np.zeros_like(r)
    return m, m[-1] / Msun, r, rho, P, u  # Return the mass and radius of star
Пример #2
0
def sol_tov(rho_center):
    rmin = dr
    rmax = 2.e10

    r = pylab.arange(rmin, rmax + dr, dr)
    m = pylab.zeros_like(r)
    P = pylab.zeros_like(r)
    rho = pylab.zeros_like(r)

    i = 0
    rho[i] = rho_center
    m[i] = (4.0 / 3.0) * pi * dr**3
    P[i] = eos(rho_center, 0.0)

    y = pylab.array([P[i], m[i]])

    while P[i] > 0.0 and i < len(r) - 1:
        y = rk4(tov, y, r[i], dr, rho[i])
        m[i + 1] = y[1]
        P[i + 1] = y[0]
        rho[i + 1] = bisection(2 * rho[i], 0.1 * rho[i], 1.e-8, P[i + 1])
        i = i + 1

    if P[i] < 0.0:
        P[i] = 0.0
        rho[i] = 0.0

    m, r, rho, P = m[:i], r[:i], rho[:i], P[:i]  # Give restriction for region

    return m, m[-1] / Msun, r, rho, P  # Return the mass and radius of star