def plot_union_of_times(top_n, exclusive, avg): function_names = set([]) parameter = get_parameter_name(exclusive, avg) description = get_description(exclusive, avg) for name in Path("warpx_outputs/").rglob("*.json"): print("adding function name:", name) gf = get_graphframe(name) top = gf.dataframe.sort_values(by=parameter, ascending=False)[:top_n] for function in top["name"]: function_names.add(function) if len(function_names) > 20: print( f"WARNING: {len(function_names)} are set to be plotted, this will " "cause some distinct functions or regions to have the same color!") colors = [] # For this data I think tab20 was the best color choice color = cm.tab20(np.linspace(0, 1, len(function_names))) for i, c in zip(range(len(function_names)), color): colors.append(c) plot_selection_of_times( function_names, exclusive, avg, title=f"Top {top_n} {description} times across regions", filename=f"top_{top_n}_{description.replace(' ', '_')}_times", colors=colors)
def plot_N_clusters(N, X, feats_i, feats_o, hit_clusters, filename): X = np.array(X) X[:, 1] *= np.sign(X[:, 2]) colors = cm.tab20(np.linspace(0, 1, N)) for i in range(len(X)): if (hit_clusters[i] == 0): plt.scatter(X[i][3], X[i][1], c=colors[0], alpha=0.2, linewidths=0, marker = 's', s=8) elif (hit_clusters[i] < N): plt.scatter(X[i][3], X[i][1], c=colors[int(hit_clusters[i])], linewidths=0, marker='s', s=30) plt.ylabel("R [m]") plt.xlabel("z [m]") plt.savefig(filename, dpi=1200) plt.show() plt.clf()
def testUnitDiskGraph(seed=0): makeCanvas(size=[8, 8]) un = 1 G = unitDiskGraph(40, .5, un, seed=seed, NodeSize=.15) G.drawLines() G.drawNodes() ax = plt.gca() for i in G.pos: circ = plt.Circle(i, radius=un / 2, fc='#00000000', ec='lightgray', zorder=0) ax.add_patch(circ) plt.title("Unit Disk Graph as Circle Intersections") makeCanvas(size=[8, 8]) un = 1 G = unitDiskGraph(40, .5, un, seed=seed, NodeSize=.15) for i in range(G.size): for j in range(i): if G.Mat[j, i] == 1 and G.Mat[i, j] == 1: G.Mat[j, i] = random.choice([0, 0, 1]) G.drawArrows(hwd=.05, hln=.05) S = stronglyConnected(G) ctr = 0 C = cm.tab20([i for i in range(20)]) for i in S: for j in i: G.colors[j] = C[ctr % 20] G.texts[j] = ctr ctr += 1 G.drawNodes() G.drawText() plt.title( "Strongly Connected Components\n(After Randomizing Directionality)")
#%% with open(write_path + "/multi_chain_50_len20000_acc", "rb") as file: acc_probs = pkl.load(file) res_all = az.from_netcdf(write_path + "/multi_chain_50_len20000_all") #%% coords = {"cell_type": "k__Bacteria;p__Proteobacteria"} az.plot_trace(res_all, var_names="beta", coords=coords) plt.show() #%% sns.set(style="ticks", font_scale=1) n_chains = 50 col = [cm.tab20(i % 20) for i in range(n_chains)] g = sns.FacetGrid(data=acc_probs.loc[acc_probs["Cell Type"].isin([ "k__Bacteria;p__Fusobacteria", "k__Bacteria;p__Firmicutes", "k__Bacteria;p__Tenericutes" ])], col="Cell Type", col_wrap=3) g.map(sns.kdeplot, "Inclusion probability") rug = g.map(sns.rugplot, "Inclusion probability", height=0.3, color="black") for ax in g.axes: ax.axvline(0.81, color="red", linewidth=0.5) # There is no labels, need to define the labels legend_labels = [i + 1 for i in range(n_chains)]
from cycler import cycler import numpy as np import pandas as pd import matplotlib.colors as colors import matplotlib.pyplot as plt from laboratory import config, processing, modelling from laboratory.processing import Sample from matplotlib.offsetbox import AnchoredText import matplotlib.dates as mdates from matplotlib.pyplot import cm from impedance import preprocessing as pp from datetime import datetime as dt from impedance.models.circuits import fitting plt.style.use('ggplot') plt.ion() color_cycle = cycler(color=cm.tab20(np.linspace(0, 1, 20))) K_OHM = r'k\Omega' degC = r'$^\degree$C' CONDUCTIVITY = r'$Conductivity~[S/m]$' THERMOPOWER = r'$Thermopower~[\mu V/K]$' TEMP_C = r'$Temperature~[\degree C]$' TEMP_K = r'$Temperature~[\degree K]$' FUGACITY = r'$fo2p~[log Pa]$' RESISTIVITY = r'$Resistivity [\omega m^-1]$' def plot(func): @wraps(func) def wrapper(data, *args, **kwargs): if isinstance(data, Sample):
import scipy.io import matplotlib.pyplot as plt from sklearn.decomposition import KernelPCA from scipy.cluster.hierarchy import linkage, dendrogram, fcluster import scipy.spatial.distance as ssd import matplotlib as mpl from matplotlib.pyplot import cm from scipy.cluster import hierarchy from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics import v_measure_score # Custom imports from modules import RC_model # Set the colormap for the histogram plot cmap = cm.tab20(np.linspace(0, 1, 12)) hierarchy.set_link_color_palette([mpl.colors.rgb2hex(rgb[:3]) for rgb in cmap]) # Fix the random seed for reproducibility np.random.seed(0) # ============ RC model configuration and hyperparameter values ============ config = {} # Reservoir config['n_internal_units'] = 450 # size of the reservoir config['spectral_radius'] = 0.59 # largest eigenvalue of the reservoir config[ 'leak'] = 0.6 # amount of leakage in the reservoir state update (None or 1.0 --> no leakage) config[ 'connectivity'] = 0.25 # percentage of nonzero connections in the reservoir
tod_sb = my_file['spectrometer/band_average'][:, :, ncut:ncut + nuse] / 1e6 pixels = np.array(my_file['spectrometer/feeds'][:]) - 1 t = my_file['spectrometer/MJD'][ncut:ncut + nuse] t = (t - t[0]) * 24 * 60 # minutes n_det = 20 n_sb = 4 n_samp = len(tod_sb[0, 0]) tod = np.zeros((n_det, n_sb, n_samp)) tod[pixels] = tod_sb tod[19] *= np.nan tod[3] *= np.nan tod[6] *= np.nan plt.figure(figsize=(5, 4)) # color=cm.rainbow(np.linspace(0,1,n_det)) color = iter(cm.tab20(np.linspace(0, 1, n_det))) for i in range(n_det - 1): c = next(color) plt.plot(t, tod[i, :].mean(0), c=c, label='feed %02i' % (i + 1)) # for j in range(n_sb): # if j == 0: # plt.plot(t, tod[i, j], c=c, label='feed %02i' % (i+1)) # else: # plt.plot(t, tod[i, j], c=c) plt.xlim(t[0], t[-1]) plt.xlabel('time [m]') plt.ylabel(r'power [MW Hz${}^{-1}$]') plt.legend(bbox_to_anchor=(1.01, 1.01), fontsize=8) plt.savefig('all_feed_plot_good.pdf', bbox_inches='tight') # plt.show()
first_order_err_bilin = np.array(first_order_err_bilin) second_order_err = np.array(second_order_err) second_order_err_bilin = np.array(second_order_err_bilin) print("Mean PSNR: %.03f" % psnrs.mean()) print("Mean SSIM: %.03f" % ssims.mean()) print("Mean bilinear PSNR: %.03f" % psnrs_bilin.mean()) print("Mean bilinear SSIM: %.03f" % ssims_bilin.mean()) create_graph(np.arange(len(psnrs)), [psnrs, psnrs_bilin], "PSNR per frame on 17 channel CM1 data", "PSNR", "frame", ['blue', 'red'], ['Network', 'Bilinear']) create_graph(np.arange(len(psnrs)), psnr_diff_per_channel, "PSNR difference (network - bilinear) per channel", "PSNR", "frame", cm.tab20(np.linspace(0, 1, len(psnr_diff_per_channel))), [str(i) for i in range(len(psnr_diff_per_channel))]) create_graph(np.arange(len(psnrs)), [ssims, ssims_bilin], "SSIM per frame on 17 channel CM1 data", "SSIM", "frame", ['blue', 'red'], ['Network', 'Bilinear']) create_graph(np.arange(len(psnrs)), [first_order_err, first_order_err_bilin], "First order gradient error per frame on 17 channel CM1 data", "First order gradient error", "frame", ['blue', 'red'], ['Network', 'Bilinear']) create_graph(np.arange(len(psnrs)), [second_order_err, second_order_err_bilin], "Second order error per frame on 17 channel CM1 data", "Second order error", "frame", ['blue', 'red'], ['Network', 'Bilinear'])
lmax=lmax, start_at_zero=False) my_spectra = ["TT", "TE", "EE"] count = 0 for s1, spec in enumerate(my_spectra): plt.figure(figsize=(12, 6)) if spec == "TE": cross_freq_list = [ "%sx%s" % (f0, f1) for f0, f1 in product(freq_list, freq_list) ] else: cross_freq_list = ["%sx%s" % (f0, f1) for f0, f1 in cwr(freq_list, 2)] color = iter(cm.tab20(np.linspace(0, 1, 10))) for cross_freq in cross_freq_list: ps = Dlth[spec].copy() if spec == "TT": plt.semilogy() f0, f1 = cross_freq.split("x") _, flth = np.loadtxt("%s/fg_%sx%s_TT.dat" % (bestfit_dir, f0, f1), unpack=True) ps += flth[:lmax] Db = proj_data_vec_mean[count * n_bins:(count + 1) * n_bins] sigmab = np.sqrt(proj_cov_mat.diagonal()[count * n_bins:(count + 1) * n_bins])